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Abstract
Several authors have reported numerical problems when simulating semiconduc-
tor devices using the hydrodynamic model. In this paper, the cause of these
numerical problems is identified. Furthermore, a remedy consisting of adaptive
quadrature rules is proposed. The resulting discrete schemes are stable, which
is verified both theoretically and demonstrated through several examples.

1. Description of the model

The model considered in this paper has been described frequently in literature, and
will therefore not be derived. It consists of the normal set of drift-diffusion equations,
to which the following equations are added: ’
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The energy flux densities are expressed in terms of the carrier temperatures, as follows:
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In the above, w, and w, are the average energies of the carriers and the coefficients
Kp, Ky are usually modelled using the Wiedemann-Franz law:
Ky = CwrkDyp, kn = CwrkD,n.

In addition, the expressions for the current densities contain an extra term (due to
temperature gradients) as compared to the classical drift-diffusion expressions:
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in which the thermal diffusion coefficients are often modelled by
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2. The cause of numerical problems

The model described in the previous section is discretised using the finite volume
method (or: box method). This means that, after a mesh (rectangular or triangular)
has been constructed, each of the five partial differential equations is integrated over
boxes around mesh points. In the resulting expressions, integrals of the form [V -@Q
(where @) is some vector quantity, for example J,, or .S,,) are transformed into integrals
over the boundary ef the box. These boundary integrals can then be approximated
by using low order quadrature rules, so that only normal components of the quantity
() at the midpoints between two nodes are required. These normal components are
obtained by using Scharfetter-Gumimel type expressions. This is very straightforward,
and has been described in many publications.

The integrals of the right hand sides of the partial differential equations are usually
approximated by applying the midpoint rule. Hence, the right hand sides only have
to be evaluated at the mesh points. Both for Poisson’s equation and the continuity
equations, the midpoint rule can be shown to be the right choice in view of stability:
the resulting discrete schemes yield non-oscillatory, physically relevant solutions, even
for very coarse meshes. Because of the latter, adaptive meshing techniques starting
from relatively coarse grids are possible. Clearly, this property would also be desirable
for extended models, such as the hydrodynamic model. Unfortunately, this is not the
case if the discretisation technique described is applied to equations (1)-(4). This
is easily demonstrated using the following example, which was taken from [1]. For
this problem (a pin-diode with a bias of 500 Volts), we display the discrete solution
using 51 mesh points in Fig. 1. In addition to the oscillatory character of the discrete
solution, we also found a rather slow convergence of the nonlinear solution process.
These numerical problems were also observed for other devices; sometimes we even
encountered severe cooling effects (carrier temperatures as low as 200 K).

Several authors have already expressed their opinion on the cause of these numerical
problems. Some publications are devoted to a different discretisation of the normal
components of S, and S,,. This is, however, not the right angle of attack since it can
be shown that the Scharfetter-Gummel type discretisation of these quantities leads to
a system matrix with the right properties (M-matrix). Other authors have identified
the discretisation of the term FE - J, as the cause of the problems, however, without
giving a satisfactory explanation. Also, no adequate remedy has arisen from this
observation.

After careful analysis of the system of equations, we found that the term E - J, is
indeed the cause of the numerical problems. More specifically, it is the additional
term containing V7, in the expression for .J, which causes instabilities. This can
be verified mathematically by observing that, when expanding the term E - .J, into
three terms, the use of the midpoint rule on the integrals over the boxes destroys the
M-properties of the system matrix corresponding to the equations for the discrete
carrier temperature 7,,. A useful experiment to demonstrate this is the following:
use a nonlinear solution strategy in which we first solve for the potential and the
carrier concentrations (keeping the temperatures fixed), followed by the solution of the
temperature equations. This iterative solution strategy may be viewed as a modified
version of the wellknown Gummel’s method. For the pin-diode used in Fig. 1, we
find that the carrier temperatures are non-oscillatory after 1 iteration of this solution
procedure. However, after 2 iterations we find ! wiggle in the discrete solution and
after 3 iterations there are 2 wiggles.
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3. A stable discretisation scheme

The observation that the numerical problems are caused by the implicit dependence
of the current density J, on the carrier temperature T,, immediately points towards
a possible remedy. Namely, the implicit dependence can be made explicit simply by
expanding the term E - J, into three terms and rewriting (2) in the form
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The third term in the right hand side of (7) being the only problematic term, we
suggest to use the midpoint rule for all other terms, and a special quadrature rule for
the integral of ¢DTnE.VT,. We have developed an adaptive rule which takes into
account the direction of the electric field E, full details of which will be given in a
more extensive report (and at the conference). The effect of this rule on the coefficient
matrices of the discretised system is such that contributions to the diagonal are non-
negative, whereas contributions to the off-diagonal elements are non-positive. In this
way, the M-matrix character [3] is conserved. In Fig. 2 we show the solution of
the pin-diode obtained using this new quadrature rule, again with only 51 uniformly
distributed mesh points.

4. Conclusion

In this paper, we have identified the true cause of the numerical problems encoun-
tered when using the hydrodynamic model. Having established, both theoretically
and experimentally, that the implicit dependence of the current density on the gradi-
ent of the carrier temperature causes these problems, making this term explicit and
using a different quadrature formula in the box integrals is shown to provide an ad-
equate remedy. Although, in this paper, only a simple 1-d example has been given,
experiments on 2-d examples have shown that the method performs well on more
complicated devices (MOS-devices, bipolar transistors). The fact that the remedy
has a sound mathematical basis is a guarantee that numerical problems are avoided
irrespective of the grid size. In this respect, the proposed discretisation leads the
way to adaptive meshing also for hydrodynamic simulations, without having to use
extremely fine initial grids.

In addition to the non-oscillatory character of discrete solutions, we have found the
nonlinear solution processes to converge much better. Indeed, vector extrapolation
methods as used in [2] can be used to accellerate the modified Gummel method so as
the obtain solutions even faster.
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Figure [: Electron temperature for pin-diode at -500 V using midpoint rule
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Figure 2: Electron temperature for pin-diode at -500 V using adaptive rule





