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Abstract 

We present some results on the mathematical analysis of kinetic equations for 
modelling transport processes in semiconductors. We focus our attention on 
the connection between the kinetic models and the fluids ones based on drift- 
diffusion or hydrodynamic equations. Asymptotic analysis gives hydrodynamic 
coefficients in, terms of microscopic quantities and allows to derive accurate 
boundary conditions. 

1. Introduction 

Transport modelling in modern submicronic devices requires a kinetic or quantum 
description. It  explaics the increase of interest in numerical simulation and mathe- 
matical analysis of the  Boltzmann equations for semiconductors. 

Perhaps one of the major issue for modelling is t o  couple simulations on t h e  three 
levels : quantum, kinetic and fluids, depending on the regions of the device. Doing 
this requires a very precise description of t h e  mathematical connection between this 
three levels. We present here some result on this topic. 

2. Existence theory for kinetic models and connection with quantum 
physics. 

One of the  most general kinetic models is based on the following Boltzmann equation, 
bl : 

where t h e  distribution function f depends on time t ,  position x and wave vector k .  
The  electric field is denoted by E and satisfies the Poisson equation. Therefore it  
depends on the  distribution f through the concentration 7% : 
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Therefore the Boltzmann equation is nonlinear. Moreover if no degeneracy assump- 
tion is made, the collision operator reads : 

Thus it is also nonlinear. Above, s is the scattering rate. From the principle of 
detailed balance, it follows that : 

s(kl, k)M(k) = s(k, kl)M(kl) (4) 
where M is the normalized Maxwellian : 

Here ~ ( k )  is the energy of carriers, kB is the Boltzmann constant and T the tem- 
perature of the crystal. The velocity v(k) depends on the energy band through the 
relation 

1 
v(k) = -Vke(k). 

h ( 6 )  

Recent progress in non linear analysis, due mainly to Diperna and Lions [2], allow 
to obtain a complete existence theory of ( I ) ,  for boundary value problems [7], [8], as 
well as for the Cauchy problem [3]. More interesting from a physical point of view is 
the determination of entropies related to (1). Indeed we have 

Proposition 1 Let K be any increasing function, then for every distribution f 

Define 

then the functions 

S ( t ,  x) = - 

are entropies for (1).  

This proposition follows from straightforward algebra using (4), see [3]. One conse- 
quence is the determination of equilibrium distributions for Q which are nothing but 
Fermi-Dirac distributions 

Concerning the connection between quantum physics and Boltzmann equations, it is 
well known that it can be provided by tracking wave packets. However, especially for 
coupling numerical methods, one wish to have a more precise derivation of Boltzmann 
equations from Bloch equations. With P.A. Markowitch and N.J. Mauser [lo],  we have 
introduced a Wigner function approach which is well adapted to describe periodic 
materials. Namely if $ is a wave function the related Wigner series is 

where p belong to the lattice. Then it can be shown that the Wigner function w 
tends to the distribution function f when the scaled Planck constant and the scaled 
characteristic length of the lattice vanish. Moreover macroscopic quantities are easily 
computed from the Wigner function w. 
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3. Fluid approximations 

One way to analyse the connection between the Boltzmann equation (1) and fluid 
models is to use asymptotic analysis. Thus a scaled version of (1) is 

where a is a relative value of the mean free oath. Then we have to find the limit of 
the distribution f as a vanishes. In a very general framework, with F. Golse we have 
proved in [9] that  the function f tends to  a Fermi-Dirac distribution F (10). The 
chemical potential p solves the drift diffusion equation 

din + divj = 0, n = n(p) ,  j = II(p).V,(p - V ) ,  (13) 

where the positive definite matrix p is entirely determined by the scattering croos 
section s. The proof relies on entropies estimates based on Proposition 1 and on 
mean compactness results of [2]. Using parabolic band approximation and relaxation 
time model, it is possible to compute explicit values of the coefficients in terms of 
Fermi integrals, [6]. Of course if a non degeneracy assumption is made, we recover 
the Schockley equation. 

Interesting for applications is the analysis of boundary conditions. In first approx- 
imation a Dirichlet boundary condition is derived for the concentration. But using 
such a condition, we neglect a boundary layer. As a concequence non physical dis- 
continuities of the concentration at the boundaries appear in numerical simulations. 
This boundary layer can be taken into account if the Dirichlet boundary condition 
n = no is replaced by a Robin boundary condition 

where D is a diffusion coefficient, v the outward normal and 1 the so-called extrapola- 
tion length. This length is also determined by the microscopic scattering mechanisms, 
see [ l l ] .  

It seems much more difficult to derive hydrodynamic equations from the Boltzmann 
equation without ad-hoc assumptions on the distribution function. An attempt is this 
direction is to introduce an other scaling of the Boltzmann equation which leads to 

When a tends to 0, the function f tends to n F ( E ,  k )  where F ( E ,  k) is the homoge- 
neous steady state 

E.V*F = Q ( F ) ,  IF dk = 1. (16) 

At a first order of approximation, n solves the Ohm law, see 151. The second order 
of approximation can only formally be performed. It leads to extended drift-diffuion 
models [5] or to  hydrodynamic systems where the pressure tensor has non isotropic 
components in the direction of the electric field, [4]. 
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