
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 5 
Edited by S. Selberherr, H. Stippel, E. Strasser - September 1993 

Process Flow Representation within the VISTA 
Framework 

Ch. Pichler and S. Selberherr 

Institute for Microelectronics, TU Vienna 
GuDhausstraBe 27-29, A-1040 Wien, AUSTRIA 

Abstract 

The execution of multi-step simulation sequences involving a number of inde- 
pendent simulation tools is taken care of by the VISTA simulation flow control 
module which allows for the definition of a simulation task by means of the 
simulation flow description, a representation of the process flow using symbolic 
names to call simulation tools. Large process flows can be modeled by using 
predefined sequences, where the calculation results of all intermediate simula- 
tion steps remain available for analysis at a later time. Data level integration is 
based on the PIF data exchange format which is used to create a wafer state de- 
scription containing all wafer geometry and material data after each simulation 
step. 

1. Introduction 

Due to long fabrication times in a wafer fab the simulation of semiconductor fabri- 
cation processes and device behavior are an indispensable aid for experimenting with 
device designs and process parameters. Technology CAD (TCAD) has successfully 
used process simulation tools to model production process steps during the design sta- 
ges of a device. A wide variety of such tools exist, each being more or less specialized 
to perform a specific task. In order to integrate simulation tools and to present them 
to the user in a uniform way, TCAD frameworks have been developed, e.g. [I], [2], 
[3]. Drawing on experience gained from these undertakings, we took on devising and 
implementing a simulation flow control module for the Viennese Integrated System 
for Technology-CAD Applications (VISTA) [4], [5], putting special emphasis on an 
oven c o n c e ~ t  which allows for the integration of arbitrarv simulators. and on a sim- 
pie, extendible representation of simulition sequences, eiabling the p;ocess engineer 
to quickly apply changes to the process design, investigate the results, and optimize 
device performance. 

2. Multistep Process Simulation 

Consider a set of process simulation tools such as PROMIS [6] or SAMPLE [7], 
each capable of performing the numerical simulation of one or more VLSI fabrication 
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process steps. Typically, the user invokes a simulation by specifyiilg the values of 
the tool's input parameters via an input deck, i.e., a text file containing directives 
for setting these parameters, which is read by the tool upon execution. Additionally, 
initial geometry and dopant distribution data have to be provided in a format readable 
by the tool; after the successful completion of a simulation run, the output data are 
written to a file. 

Should the user intend to simulate a series of process steps, the appropriate simulation 
tools have to be called sequentially, with the output data of a tool run being used 
as the input data for the next one. Therefore, a tool must be able to understand 
the data generated by its predecessor in the process sequence, i.e. the tools have 
to share a common data format or be able to translate from a foreign format to 
their own. Calling the tools one after the other in a UNIX environment is usually 
accomplished by a shell script which generates an input deck and calls a simulator for 
each simulation step. As the number of input parameters for a single tool is of the 
order of ten to hundred, modifying the script in the case of a change of a parameter 
value or of the process sequence is a tedious and error-prone task. 

If we look at a process simulation sequence from different levels of abstraction we are 
able to identify a number of problem domains. At the data level, we have to ensure 
that the results generated by a tool are understood by the next one. At the tool 
control level, the simulator has to be provided with a set of key values encoding the 
parameters for a particular process step. Depending on the tool, various methods 
have to be provided for passing the process settings, e.g., generating an input deck. 
At the task level, we want to specify our simulation intent as intuitively as possible, 
concentrating on design parameters rather than on tool invocation subtleties. If we are 
not satisfied with the final outcome of a simulation sequence and want to modify our 
design, it should not be necessary to completely rewrite the process flow description, 
i.e., predefined process sequences should remain unchanged even if minor alterations 
are to be made. Using such process modules previously written to build up larger 
process flows greatly simplifies the process flow design. 

Offering the user a comfortable means for automatically executing a large series of 
simulation steps reduces the cycle time in the design iteration loop. The following 
section presents our approach towards this goal, where we concentrate on the aspects 
of a generic tool integration concept. 

3. Tool Integration and Process Flow Representation within VISTA 

The Viennese Integrated System for Technology-CAD Applications (VISTA) uses 
the Profile Interchange Format (PIF) [8] as a common data format to exchange wafer 
data between simulation tools. Simulators which do not adhere to this policy have 
to get a wrapping program which establishes a PIF interface. Tool integration and 
task definition issues with respect to process flow simulation are subsumed under the 
VISTA simulation flow control module. Essentially, this module consists of three 
parts, the XLISP binding functions for the simulation tools, the tool control module, 
and the task control module. 

In order to make executable modules available to the TCAD shell, they have to have 
a representation in the shell's extension language, XLISP. These binding functions 
enable the user to invoke a simulation step just like any other XLISP function. All 
calling details for the execution of a simulation module are hidden from the user, 
and so are all data manipulations necessary to feed wafer data into the simulator 

- 
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and to get the calculation's results back. All parameter values, file names, and other 
control data for a tool run are ~ a s s e d  as LISP key arguments to avoid errors due to a 
wrong argument order. These control data are translated into the simulator's control 
argument format, e.g., an input file is generated, or a command line is synthesized, or 
simulator specific PIF objects are added to the PIF input file. While the PIF defines 
a syntax for wafer description, it does not enforce a semantically strict representation 
of wafer data. In generating an input data file, ambiguities brought about by this 
semantic liberty are resolved by the binding function. For instance, we have to insure 
that all symbolic names used in a PIF file to describe material types are understood 
by the tool. If a material is not recognized, its name is replaced by an appropriate 
alias. Similarly, simulators do not agree upon geometry orientations (clockwise or 
counter clockwise), or they might require the presence of certain PIF objects which 
a preceding tool has not supported. In order to establish a standard data interface 
for plugging in simulation tools, the XLISP binding combines wafer data from before 
and after the simulation run to generate the current wafer state, i.e., a complete 
description of the wafer geometry and impurity concentrations reflecting the current 
state of the wafer. 

Simulators usually require a large number of input parameters which alter some 
aspects of the computation and are not changed anymore once a tool is tuned to 
optimally satisfy the user's simulation requests. The tool control part passes a com- 
plete set of arguments to the simulator, merging user defined values and default 
values so that one is only obliged to enter those parameters one's concerned about. 
By switching at run-time between directories with the files containing the default 
values for the tools, the simulator behavior may be modified without affecting user 
settings. 

In this context, we call a task any sequence of computations carried out on rela- 
ted data, e.g. a series of process simulation steps working on a common wafer, or 
an iteration loop which performs the same sequence of calculations on a set of in- 
itial geometries which might be automatically generated from a prototype geometry 
description, and the like. The task control module is the only one interacting di- 
rectly with the user. A task is defined by writing a simulation flow description in 
LISP syntax, where symbolic names are used to specifiy a call to one of the registe- 
red simulation tools or to execute some control commands for data handling during 
the execution of a task. For instance, if the user wants to call a predefined process 
sequence, the process reference keyword PROCESS followed by the name of the file 
containig the process sequence is used. An optional override mechanism allows any 
parameter in any subprocess to be modified. The process reference and parameter 
override mechanisms work recursively. 

The following example shows a small part of a wafer fab run traveller as it appears 
in the simulation flow description. 

( 
( s t a r t - w i t h  :phys-pif - inf  i l e  "1nitGeom.pbf") 
(mont e-carlo-implant : elem "BORON" :dose l e i 3  : energy 30 .  ) 
(anneal  :temp 900 : t ime (35 "min")) 
( i so t rop ic -depos i t i on  : t ime 225. :ma te r i a l  ("Si0211 0.0015)) 
( an i so t rop ic -e t ch  : t ime 68. :material-def a u l t  ( 0 .  0.0001) 

:ma te r i a l  ("Si02" 0 0.005)) 
(monte-carlo-implant :elem "BORON" :dose l e i 5  :energy 45.)  
(anneal  :temp 900 : t ime (20 "min")) 

) 
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The sequence shown above defines the process steps necessary to simulate the fabri- 
cation of an LDD (lightly-doped drain) structure of a p-channel MOS transistor. The 
PIF file 1nitGeom.pbf contains a P I F  model of the wafer to be processed, basically 
a chunk of silicon partially covered by a nitride layer defining the gate location. 

4. Conclusions 

The simulation flow control module provides a comfortable means for defining, exe- 
cuting and modifying multistep simulation tasks. Existing process sequences can be 
easily modified to  optimize device characteristics, large process flows can be built 
up from process modules. The XLISP tool binding functions establish an interface 
which allows for the integration of a large class of simulation tools. These tools are 
available to the user as plug-in modules for his simulation tasks. If the user chooses 
so, all intermediate calculation results remain available for analysis a t  a later time, 
simplifying error recovery as well as a detailed examination of process steps. 
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