
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 5
Edited by S. Selberherr, H. Stippel, E. Strasser - September 1993

Process Flow Representation within the VISTA
Framework

Ch. Pichler and S. Selberherr

Institute for Microelectronics, TU Vienna
GuDhausstraBe 27-29, A-1040 Wien, AUSTRIA

Abstract

The execution of multi-step simulation sequences involving a number of inde-
pendent simulation tools is taken care of by the VISTA simulation flow control
module which allows for the definition of a simulation task by means of the
simulation flow description, a representation of the process flow using symbolic
names to call simulation tools. Large process flows can be modeled by using
predefined sequences, where the calculation results of all intermediate simula-
tion steps remain available for analysis at a later time. Data level integration is
based on the PIF data exchange format which is used to create a wafer state de-
scription containing all wafer geometry and material data after each simulation
step.

1. Introduction

Due to long fabrication times in a wafer fab the simulation of semiconductor fabri-
cation processes and device behavior are an indispensable aid for experimenting with
device designs and process parameters. Technology CAD (TCAD) has successfully
used process simulation tools to model production process steps during the design sta-
ges of a device. A wide variety of such tools exist, each being more or less specialized
to perform a specific task. In order to integrate simulation tools and to present them
to the user in a uniform way, TCAD frameworks have been developed, e.g. [I], [2],
[3]. Drawing on experience gained from these undertakings, we took on devising and
implementing a simulation flow control module for the Viennese Integrated System
for Technology-CAD Applications (VISTA) [4], [5], putting special emphasis on an
oven c o n c e ~ t which allows for the integration of arbitrarv simulators. and on a sim-
pie, extendible representation of simulition sequences, eiabling the p;ocess engineer
to quickly apply changes to the process design, investigate the results, and optimize
device performance.

2. Multistep Process Simulation

Consider a set of process simulation tools such as PROMIS [6] or SAMPLE [7],
each capable of performing the numerical simulation of one or more VLSI fabrication

26 Ch. Pichler et al.: Process Flow Representation within the VISTA Framework

process steps. Typically, the user invokes a simulation by specifyiilg the values of
the tool's input parameters via an input deck, i.e., a text file containing directives
for setting these parameters, which is read by the tool upon execution. Additionally,
initial geometry and dopant distribution data have to be provided in a format readable
by the tool; after the successful completion of a simulation run, the output data are
written to a file.

Should the user intend to simulate a series of process steps, the appropriate simulation
tools have to be called sequentially, with the output data of a tool run being used
as the input data for the next one. Therefore, a tool must be able to understand
the data generated by its predecessor in the process sequence, i.e. the tools have
to share a common data format or be able to translate from a foreign format to
their own. Calling the tools one after the other in a UNIX environment is usually
accomplished by a shell script which generates an input deck and calls a simulator for
each simulation step. As the number of input parameters for a single tool is of the
order of ten to hundred, modifying the script in the case of a change of a parameter
value or of the process sequence is a tedious and error-prone task.

If we look at a process simulation sequence from different levels of abstraction we are
able to identify a number of problem domains. At the data level, we have to ensure
that the results generated by a tool are understood by the next one. At the tool
control level, the simulator has to be provided with a set of key values encoding the
parameters for a particular process step. Depending on the tool, various methods
have to be provided for passing the process settings, e.g., generating an input deck.
At the task level, we want to specify our simulation intent as intuitively as possible,
concentrating on design parameters rather than on tool invocation subtleties. If we are
not satisfied with the final outcome of a simulation sequence and want to modify our
design, it should not be necessary to completely rewrite the process flow description,
i.e., predefined process sequences should remain unchanged even if minor alterations
are to be made. Using such process modules previously written to build up larger
process flows greatly simplifies the process flow design.

Offering the user a comfortable means for automatically executing a large series of
simulation steps reduces the cycle time in the design iteration loop. The following
section presents our approach towards this goal, where we concentrate on the aspects
of a generic tool integration concept.

3. Tool Integration and Process Flow Representation within VISTA

The Viennese Integrated System for Technology-CAD Applications (VISTA) uses
the Profile Interchange Format (PIF) [8] as a common data format to exchange wafer
data between simulation tools. Simulators which do not adhere to this policy have
to get a wrapping program which establishes a PIF interface. Tool integration and
task definition issues with respect to process flow simulation are subsumed under the
VISTA simulation flow control module. Essentially, this module consists of three
parts, the XLISP binding functions for the simulation tools, the tool control module,
and the task control module.

In order to make executable modules available to the TCAD shell, they have to have
a representation in the shell's extension language, XLISP. These binding functions
enable the user to invoke a simulation step just like any other XLISP function. All
calling details for the execution of a simulation module are hidden from the user,
and so are all data manipulations necessary to feed wafer data into the simulator

-

Ch. Pichler et al.: Process Flow Representation within the VISTA Framework 27

and to get the calculation's results back. All parameter values, file names, and other
control data for a tool run are ~ a s s e d as LISP key arguments to avoid errors due to a
wrong argument order. These control data are translated into the simulator's control
argument format, e.g., an input file is generated, or a command line is synthesized, or
simulator specific PIF objects are added to the PIF input file. While the PIF defines
a syntax for wafer description, it does not enforce a semantically strict representation
of wafer data. In generating an input data file, ambiguities brought about by this
semantic liberty are resolved by the binding function. For instance, we have to insure
that all symbolic names used in a PIF file to describe material types are understood
by the tool. If a material is not recognized, its name is replaced by an appropriate
alias. Similarly, simulators do not agree upon geometry orientations (clockwise or
counter clockwise), or they might require the presence of certain PIF objects which
a preceding tool has not supported. In order to establish a standard data interface
for plugging in simulation tools, the XLISP binding combines wafer data from before
and after the simulation run to generate the current wafer state, i.e., a complete
description of the wafer geometry and impurity concentrations reflecting the current
state of the wafer.

Simulators usually require a large number of input parameters which alter some
aspects of the computation and are not changed anymore once a tool is tuned to
optimally satisfy the user's simulation requests. The tool control part passes a com-
plete set of arguments to the simulator, merging user defined values and default
values so that one is only obliged to enter those parameters one's concerned about.
By switching at run-time between directories with the files containing the default
values for the tools, the simulator behavior may be modified without affecting user
settings.

In this context, we call a task any sequence of computations carried out on rela-
ted data, e.g. a series of process simulation steps working on a common wafer, or
an iteration loop which performs the same sequence of calculations on a set of in-
itial geometries which might be automatically generated from a prototype geometry
description, and the like. The task control module is the only one interacting di-
rectly with the user. A task is defined by writing a simulation flow description in
LISP syntax, where symbolic names are used to specifiy a call to one of the registe-
red simulation tools or to execute some control commands for data handling during
the execution of a task. For instance, if the user wants to call a predefined process
sequence, the process reference keyword PROCESS followed by the name of the file
containig the process sequence is used. An optional override mechanism allows any
parameter in any subprocess to be modified. The process reference and parameter
override mechanisms work recursively.

The following example shows a small part of a wafer fab run traveller as it appears
in the simulation flow description.

(
(s t a r t - w i t h :phys-pif - inf i l e "1nitGeom.pbf")
(mont e-carlo-implant : elem "BORON" :dose l e i 3 : energy 30 .)
(anneal :temp 900 : t ime (35 "min"))
(i so t rop ic -depos i t i on : t ime 225. :ma te r i a l ("Si0211 0.0015))
(an i so t rop ic -e t ch : t ime 68. :material-def a u l t (0 . 0.0001)

:ma te r i a l ("Si02" 0 0.005))
(monte-carlo-implant :elem "BORON" :dose l e i 5 :energy 45.)
(anneal :temp 900 : t ime (20 "min"))

)

28 Ch. Pichler et al.: Process Flow Representation within the VISTA Framework

The sequence shown above defines the process steps necessary to simulate the fabri-
cation of an LDD (lightly-doped drain) structure of a p-channel MOS transistor. The
PIF file 1nitGeom.pbf contains a P I F model of the wafer to be processed, basically
a chunk of silicon partially covered by a nitride layer defining the gate location.

4. Conclusions

The simulation flow control module provides a comfortable means for defining, exe-
cuting and modifying multistep simulation tasks. Existing process sequences can be
easily modified to optimize device characteristics, large process flows can be built
up from process modules. The XLISP tool binding functions establish an interface
which allows for the integration of a large class of simulation tools. These tools are
available to the user as plug-in modules for his simulation tasks. If the user chooses
so, all intermediate calculation results remain available for analysis a t a later time,
simplifying error recovery as well as a detailed examination of process steps.

Acknowledgements

Our work is significantly supported by Digital Equipment Corporation at Hudson,
USA; and Siemens Corporation at Munich, Germany.

References

[I] D. S. Boning, Semiconductor Process Design: Representations, Tools, and Me-
thodologies, PhD Thesis, Massachusetts Institute of Technology, January 1991.

[2] A. S. Wong, Technology Computer-Aided Design Frameworks and the PROSE
Implementation, PhD Thesis, University of California, Berkeley, 1992.

[3] E. W. Scheckler et al., A Utility-Based Integrated System for Process Simulation,
IEEE Trans. Comp. Aided Design, Vol. 11, No. 7, pp. 911-920, 1992.

[4] H. Pimingstorfer et al., A Technology CAD Shell, SISDEP IV, pp. 409-416, 1991.

[5] S. Halama et al., Consistent User Interface and Task Level Architecture of a
TCAD System, NUPAD IV, pp. 237-242, 1992.

[6] G. Hobler et al., RTA-Simulation with the 2D Process Simulator PROMIS, NU-
PAD 111, pp. 13-14, 1990

[7] W. G. Oldham et al., A General Simulator for VLSI Lithography and Etching
Processes: Part 11-Application to Deposition and Etching, IEEE Trans. Electron
Devices, Vol. ED-27, No. 8, pp. 1455-1459, 1980.

[8] St. G. Duvall, An Interchange Format for Process and Device Simulation, IEEE
Trans. Comp. Aided Design, Vol. 7 No. 7 pp. 741-754, 1988.

