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Abstract 

A recently proposed approach [l] to describe rigorously diffusion and diffusion- 
related reactions on arbitrary networks in terms of elementary jumps has been 
extented to include drift-diffusion capability. The method is based on combi- 
ned density function approach to diffusion and on an adjacency matrix concept 
used in graph theory. The new method allows flexible and selective mixing 
of drift and diffusion on any two-dimensional domain of arbitrary outer and 
inner geometry. In particular, partial identity rank 4 tensors are introduced to 
allow preservation of results of previous operations not affected by the subse- 
quent mechanisms. As an application it is shown that switching-off behavior of 
currents depends sensitively on the domain geometry. 

1. Introduction to the Tensorial Diffusion Approach 

The present approach is based on a tensorial formulation of t h e  adjacency matrix in 
2D proposed recently [I] to describe rigorously diffusion on arbitrary grain boundary 
networks. To calculate elementary jumps in 2D lattice with nodes (i ,  j )  a four dimen- 
sional tensor 7 is defined with elements r ( i ,  j , m ,  n )  = 1 if t h e  nodes ( i ,  j) and ( m ,  n )  
are connected with each other, and r ( i ,  j, m, n )  = 0 otherwise. Note tha t  the  connec- 
tion is directional, i.e, the  node (i, j )  can be connected with t h e  node ( m ,  n )  but  not 
vice versa. T h a t  means t h a t  a particle can jump from (i ,  j )  t o  ( m ,  n )  but not necessa- 
rily back. Clearly, this property allows t o  define drift along arbitrary axis and also any 
local emission and absorption mechanisms. For example, t o  describe diffusion allowing 
jumps t o  t h e  nearest neighbors, only tensor elements which differ in  only one of their 
coordinates by a unity will have the  value one and all other zero: i.e., for example, 
~ ( i ,  j, i + 1, j) = 1. To evaluate the  consecutive jumps in t h e  entire domain a specific 
tensor product has t o  be constructed. This is accomplished by the  following defini- 
tion: 707 r ( d 2 ) ( i ,  j, m ,  n)) = C(k,l) ~ ( i ,  j, k,  E).r(k, E,m, n) .  In order t o  evaluate the  

M-th tensor product,  a tensor contraction 5:;) with elements i[,t))(m,n) is defined. 
The  contracted tensor gives the  probability for the particle which started to  diffuse a t  
the node ( i ,  j )  to  arrive after M jumps at  nodes ( m , n )  V m and n .  To illustrate  this,^ 
consider the diffusion of an implanted profile g(x, ,  yj ;  t = 0) for a time t = t* > 0. If 
f is t h e  frequency of t h e  diffusion coefficient then M = f . t* and and t h e  evolution 
of the  dopant profile is given by g(r,, y,; t = t*) = C(. % , I )  . 9 (i ,  j; t = 0) . i[,F;(ln,n). 
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2. Extension to Drift and Interactions 

So far, the method [I] has been employed random walk diffusional jumps to the 
nearest neighboring nodes described by the tensor I,, which we now characterize by 
an additional subscript s r ,  for short range. However, in the present formalism other 
mechanisms can be considered easily, since all mechanisms are defined by a specific 
distribution of the Is and the 0s of the respective tensor elements. For example, 
long range diffusional jumps will be defined by a tensor z,, a drift of particles in a 
specific direction by the tensor Id, absorbtion at certain regions by the tensor Zb, and 
emission from some regions by the tensor I,,, and so on. To consider a composite 
dynamics of all the mechanisms invoked, we have simply to form a multiple product 
of the elementary mechanisms considered, followed by a power tensor of this product: 
(I,"," G4 0G3 rl;:' cl)M, where the exponents n i  ( i  = 1, .., 5) denote the relative 
rapidity of the mechanism compared with the others, and M determines how often 
the whole cycle is supposed to take place, i.e., properly scaled M describes the process 
time. 

The incorporation of drift is easily accomplished. Suppose the drift is along the x- 
axis (with the index i) ,  then the only non-zero tensor elements are r(i, j, m ,  j) = 1 if 
m = i + 1 and n = j. Suppose the drift is along the xy-diagonal of the domain then 
the respective drift is a composite drift of lateral drift, rlat(i,  j, m , n )  = 1 only if m = i 
and n = j+ 1 and zero otherwise, and by a subsequent vertical drift downwards, given 
by T,,, (i,  j, m ,  n )  = 1 only if m = i + 1 and n = j and zero otherwise. The composite 
operation describing the drift downward the diagonal is accomplished by applying the 
tensor product I d r i f  = zer ?Int. 
In many cases there might be parts of the domain which are not affected by a specific 
operation, for example by drift in a selected subdomain V,, or even on the same 
subdomain there might be mechanisms operating on different time scales. In this 
case the tensor reflecting the operation on the subdomain, V,, will have zero tensor 
elements outside this particular subdomain, and by necessity, zero tensor elements 
representing all other mechanisms. Because of these vanishing tensor elements, the 
results of all previous operations and existing distributions outside of the subdomain 
will not be preserved under the current operation. In order to preserve the results 
of previous operations in subdomains not considerered under current time step, the 
currently applied tensor has to be partitioned and its elements pertaining to these 
domains should be defined im the following way: r,,,,(i, j , m , n )  = 1 only if m = i 
and n = j. In terms of our earlier definition this amounts to the self-connectedness 
relation, i.e. the node ( i , j )  (where (xi, yj) E V, V r # s )  is connected to  itself. 
This identity operation preserves the dopant distribution obtained so far by previous 
operations in the respective subdomains. 

The present approach allows also a definition of interactions on a two- (and, in princi- 
ple, also on a three-) dimensional lattice. Suppose the nodes ( m , n )  and (r ,  s )  are in- 
itially not connected with one another, i.e. r ( m ,  n,  r ,  s )  = 0 and r ( r ,  s, m, n )  = 0. The 
connection (i.e. interaction) can be activated at a later stage in the evolution, say at 
t = to by turning the tensor elements to be, ~ ( m ,  n ,  r ,  s )  = 1 and/or r ( r ,  s ,  m ,  n )  = 1, 
depending on the kind of interaction considered, as soon as the values of the species 
density g(i, j, t = t o )  under consideration at the nodes (m,  n )  and ( r ,  s )  are reaching 
specific values, for example. Construction of these interactions and their evaluation 
will be subject of future work. 
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3. Application of Drift-Diffusion 

As an illustration of the extended formalism expounded in the preceding section, 
we consider drift diffusion in two structures, one consisting of simple conducting 
rectangular strip with x-axis along the drift direction Fig.la, and a second structure, 
in which the latter rectangular domain has been extended in the transversal direction 
(y) by narrow rectangles, forming a cross structure, as shown in Fig.lb. In the initial 
stage of the drift-diffusion transport, the species, for example, electrons, are entering 
both structures at x = 0 and are allowed to spread in the structures by means of 
diffusion only. A typical diffusion profile for the cross structure is shown in Fig.2. 

t b 

Fin.1: Two structures used for drift dif- - 
fusion studies: a) rectangular channel Fig.2: Diffusion profile of the species (elec- 
and b) rectangular d~annel with trans- trons) in the cross structure prior to switching 
versa1 arms (cross structure). on of the drift field. 

I t  can be seen that the electrons 
spread also sideways into the 
lateral arms of the cross struc- 
ture. At t = t*  the drift (field) 
along the x-axis is switched on. 
After some time the diffusion 
profiles is shifted downwards 
under the influence of the drift 
field along the x-axis as shown 
in Fig.3. Let us now suppose 
that at a later time, t = t l  2 t*, 
the supply of electrons at  x = 0 
has been cut-off. In the case 
of the simple rectangular struc- 
ture, it is clear, that cutting-off 
the supply of electrons will let 
the current drop abruptly after 
a delay time At = x,/v,  where 

Fig.3: Electron distribution in the cross structure x, is the length of the rectan- 
shortly after the drift field has been switched on. gular channel and v is the drift 

velocity. This means that At is 
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the time needed to deplete the chan- A log(1) [arbitrary units] nel completely. The current switch-off 
characteristics will exhibit some decay- 

- ing tail, due to the fact that the cut-off 
- electron packet has been broaden in the - rectangular channel by diffusion. This - 

is shown in Fig.4. The switching-off be- - 
- havior for the cross structure is entirely 
- different. Even at times considerably 
- larger than t = t l  + At, there will be 

still considerable level of current, flo- 
lo"") log(time) [al'bitrary units] wing out of the channel, which is fed 

by the electrons outdiffusing from the 
Fig.4: Current switching-off characteristics lateral cross arms into the main r e~ tan -  
for rectangular channel and for the cross gular channel. Once in the rectangular 
structure. channel the electrons are subject not 

only to diffusion but also to drift along 
the x-axis, which, eventually, depletes them from the channel. This case is shown 
in Fig.5. The electron distributions for all times sufficiently larger than t = tl + At  
are self-similar. This means that for any time t >> t l  + At the electron distributions 
looks exactly the same way, except, of course, as should be expected, for the absolute 
concentration level, which decreases as the time goes on. It lies in the nature of 
diffusion (entropy) that it takes finite time for the electrons to diffuse into the regions 
transversal to the drift flow, but it takes an infinite time to deplete them completely, 
even having, as in the present case, a 'sink' at the intersection with the drift region. 
This qualitatively different switching behavior of the current in the cross structure 
is shown also in Fig.4. This example suggests, that at nanoscale dimensions an 
appropriate streamlining of the device structure will improve the switching properties 
of the device significantly. 

Fig.5: Electron distribution for current fed 
by the diffusion of electrons from the trans- 
versal regions long after the drift field has 
been switched off. 
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