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Abstract 

Neural modeling of transistor current-voltage characteristics is explored as a 
possible solution to the complexity and accuracy problems currently encoun- 
tered with analytical representations of VLSI devices. The neural modeling 
methodology is discussed along with first results obtained for a 0.8 pm CMOS 
process. The drain and substrate current-voltage characteristics of an n-channel 
MOSFET device are modeled over a drain current range of 10 orders of mag- 
nitude, from deep subthreshold to high-current operation. 

1. Introduction 

The compact MOSFET models for circuit simulation are customarily built around the 
parabolic approximation derived in the classical long-channel theory. While this ap- 
proach is adequate for channel lengths larger than 2 pm, it tends to lead to excessively 
complicated parameter definitions when modified for submicron devices. Moreover, 
the good match between models and experimental data reported for particular pro- 
cesses fails to yield similar results on different processes. This explains the quite 
respectable size of the compact modeling literature, as well as the continuous demand 
for more accurate modeling coming from circuit designers. 

To cope with the increasing complexity of the state-of-the-art VLSI scenario, we 
propose the more pragmatic approach of representing the transistor as a computer- 
simulated neural network, the connection strengths (or weights) of which are com- 
puted by training the network on measured or simulated data. The neural networks 
methodology is essentially used here as a convenient multi-variable, multi-function 
interpolation tool, rather than as a predictive tool, as usually reported. 

The basic terminology of neural networks, typed in italics, is assumed to be known, 
and the readers not yet exposed to it are referred to the introductory book [I] and to 
the representative selection of the classical neurocomputing papers [2]. 

2. Modeling Methodology with Neural Networks 

The principal steps of developing the neural network model of an electronic device are 
described in the flowchart of Fig. 1. The training and testing data are obtained from 
electrical measurements, or from numerical simulations, at  a given input parameter 
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matrix. Since neural modeling does not involve any physics-based validation, it is 
important that the data is checked for sanity by 2-D or 3-D plotting. 
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Fig. 1 - Simplified flowchart of the device 
modeling methodology based on neural 
networks. 
Fig. 2 - Drain I-V characteristics used for 
training: (a) actual (curves with circles), 
and normalization (straight lines) data at 
VG = 0, 1, 2, 3, 4, and 5 V, and (b) nor- 
malized dataat VG = 0, 0.4,0.8, 1, 1.5, 
2, 3,4, and 5 V. 
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The neural network algorithms assume that the input and output values of the mod- 
eled system are scaled to finite linear ranges, such as from -1.0 to +1 .O, that are com- 
patible with the transfer functions of the processing elements (or neurons) involved, 
and do not cause their saturation. This poses a prime difficulty to neural modeling of 
semiconductor devices, where the output currents vary by many orders of magnitude. 
Simple linear presentation of the actual data results, at best, in modeling the two 
uppermost decades of the output quantities. Conversely, simple logarithmic presen- 
tation compresses excessively the upper ranges, losing modeling accuracy there. To 
cope with this difficulty, adequate normalization functions have to be devised for each 
output quantity, such that the data are uniformly compressed to a linear range. 

Following normalization, the training data are fed into the neural simulator, together 
with the previously determined network type, structure and learning schedules. The 
neural simulation software repeatedly presents the data to the network and adjusts 
the connection weights using error minimization algorithms [3]. When a limit or a 
predetermined error for the output quantities is reached, the connection weights are 
set to their final values and, if tested satisfactorily, the network is able to model the 
device. A computer code is automatically generated for the normalized data, which 
is externally enhanced for denormalization and inclusion of device scaling rules. 
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3. Data Preparation for Neural Network Training 

The training data used for this study were generated using MINIMOS and VISTA [4], 
a Technology Computer-Aided Design environment, both from the Technical Univer- 
sity of Vienna, using the process characteristics of the company's 0.8pm/5V CMOS 
process. The goal was to  model the DC characteristics of the drain and substrate 
currents as functions of the gate and drain voltages, such as to continuously cover the 
full gate voltage range, from subthreshold to high-current operation (0 to 5 V),  and 
the drain voltage range from zero to incipient avalanche multiplication (0 to  10 V). 
The substrate was biased to source potential. 

Fin. 2a illustrates the normalization Drocess for the drain current. where the linear 
reiion I-V characteristics at  each voltage, IDN = gch(VG) V; are used as nor- 
malization functions, with gch(V~)  determined at  VD = 0.1 V. To simplify training, 
a look-up table representation of the normalization function was preferred to  an an- 
alytical function. The normalized drain current ID/IDN used for training, plotted 
in Fig. 2b, has a reduced dynamic range, and varies monotonically with the gate 
voltage. The network was actually presented the logarithm of this ratio. A similar 
normalization scheme was used for the substrate current, where the substrate current 
determined at VD = 10 V was used as a normalization function, also in a look-up 
table representation as a function of Vc. A complete training set in this case consisted 
of 10 ordered data subsets at  constant gate voltages, each having 22 drain voltage 
points. 

4. Neural Network Architecture, Parameters, Results 

With the ultimate goal of modeling for VLSI design, the networks considered were 
extremely simple, in order to minimize the calculation time of circuit simulators. 
Different network architectures and learning strategies were tried, all of which were 
of the back-propagation type. The PC1386 version of the Neuralware Professional 
II/Plus [3] software was chosen, from several commercially available packages, due 
to its multiple options of neural paradigms and monitoring devices. The best results 
were obtained with networks having two hidden layers, the typical architecture being 

2 * input (linear) 4...8 * hidden1 (tanh) + 3...4 * hidden2 (tanh) + 2 * output (tanh), 

where the transfer function of the processing element is specified in parentheses. 

The Delta-Rule learning was generally preferred, with data presented sequentially. 

Fig. 3 shows a typical well behaving network around the beginning of the training 
process. The Summation Value instrument averages its values over a displaying epoch 
equal to  the number of sets (220) in the training file. The RMS Error instrument 
averages the root mean sauare error of the o u t ~ u t s  over the same ~ e r i o d .  The arrows " 
on the error curve mark the transition points of the learning schedule, where the 
learning coefficients are changed to avoid processing element saturation. The final 
value of the linear correlation coeficient of the desired and actual outputs, printed 
on the vertical axis of the confusion matrix (see Fig. 3), is 0.9989. High values of this 
coefficient, in the range reported here are required for accurate modeling. 
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Fig. 3 - Typical NeuralWare Professional 
II/Plus screen of a well behaving net- 
work, around the beginning of the train- 
ing. 
Fig. 4 - Characteristics of a VLSI n- 
channel MOSFET: (a) real, and (b) mod- 
eled by a 2 + 6 + 4 + 2 network. VG = 
0 , 0 . 4 , 0 . 8 , 1 . 0 , 1 . 5 , 2 , 3 , 4 , 5 V .  

Fig. 4 illustrates the results of this modeling experience, for the simple network rep- 
resented in Fig. 3, comparing the real (a) and modeled (b) characteristics of the drain 
current over the full range of gate and drain voltages, covering ten orders of magni- 
tude. The network yielded similar results for the substrate current. The modeling 
accuracy is quite surprising considering the relative simplicity of the network used. 

5. Conclusions 

The neural representation is shown to be a practical and universally applicable mod- 
eling tool for accurate simulation of submicron VLSI devices. The vast variety of 
options available for neural modeling, ranging from fundamentally different network 
architectures and normalization functions, to details of training algorithms and sched- 
ules invite further communication exchange. 
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