
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 5
Edited by S. Selberherr, H. Stippel, E. Strasser - September 1993

The Application of Sparse Supernodal
Factorization Algorithms for Structurally

Symmetric Linear Systems in Semiconductor
Device Simulation

A. Liegmann and W. Fichtner

Integrated Systems Laboratory, ETH-Ziirich
Gloriastrafle 35, CH-8092 Ziirich, SWITZERLAND

1. Introduction

It is well known that the solution of sparse linear systems, generally expressed in the
form Ax = b, is a core task of numerical simulation. In case of semiconductor device
simulation the coefficient matrix A is unsymmetric, but structurally symmetric ([2]).
The solution of linear systems can be achieved by iterative or direct methods. While
iterative methods do not always lead to a solution due to matrix conditions, direct
methods usually consume more time and memory.

Figure 1: Updating column J by supernode S

78 A. Liegmann et al.: The Application of Sparse Supernodal Factorization Algorithms

2. Computational considerations

The problem of reducing the memory needed for a direct solver is closely related to the
problem of minimizing the size of the LU decomposition as a result of reordering the
coefficient matrix. In this respect the Minimum Degree reordering algorithm proved
to be very successful for general sparse systems. This algorithm has been enhanced in
terms of execution speed t o what is referred to as the Mul t ip l e M i n i m u m Degree
algorithm ([5]).
On the other hand, speeding up a direct solver basically means a faster computation
of the LU factorization. Extensive research in this area has lead to so-called supernodal
techniques. The key concept of these techniques is what is nowadays referred to as
a s u p e r n o d e [I]. During symbolic factorization, supernodes are identified as a set
of consecutive columns in the f x t o r L of the LU decomposition with the following
structural properties. A supernode formed by, s say, adjacent columns consists of two
blocks: a dense diagonal block of size s x s and a block of width s below the diagonal
block where all columns share the same sparsity pattern. A sample supernode is
depicted in Figure 1 denoted with the letter S. Computing column J involves the
following steps: for all supernodes S updating column J determine vector V1 = M*(D.V)
and then subtract i t from the contents of J , i.e. J = J - Vl (see Fig. 1). The
determination of vector V1 involves dense matrix-vector multiplications which run at
vector speed on today's supercompnters. The subtraction step requires ga.ther/scatter
operations which are mostly hardware supported on many supercomputers. As a
result, supernodal techniques make excellent use of the hardware features and thus
are highly powerful.

The computational power of supernodal techniques applied to symmetric positive def-
inite linear systems has been documented in papers like [I]. Since in semiconductor
device simulation the linear systems are usually unsymmetric but strnctura.lly sym-
metric, we could apply supernodal techniques t o Loth factors L (columns) and U (rows)
simultaneously ([3]). Further enhancements have been added and more recently we
implemented a whole collection of supernodal factorization algorithms which divide
into supernode-node and supernode-supernode or block supernode methods ([4]).

for J = I to N, d o
for j E J (i n order) d o

fo r a l l K updating j d o
determine V1 and update j

end for
s c a l e j with diagonal element

end fo r
e n d for

Figure 2: General supernodal algorithm

3. Supernode-node algorithms

Supernode-node updating describes a technique where only one column/row of the
factors L and U is computed a t a time, although the corresponding supernode might

A. Lieginann et al.: The Application of Sparse Supernodal Factorization Algorithms 79

consist of several columns/rows. Figure 2 depicts the general framework for algo-
rithms implementing this technique. A first glance at the algorithm already reveals
the general form of supernode-node updating algorithms: a triple-nested for-loop (in-
dicated with indices 1 through 3). The outermost loop runs over all supernodes J
that were generated in the reordering and symbolic factorization steps. The next
for-loop (2) goes one level deeper and scans over all nodes j of the current supernode
J starting with the smallest index. The innermost loop (3) handles the contribution
of all updating supernodes K t o the current node j. Finally, column/row j has to be
scaled by its diagonal element (4).

4. Block supernode algorithms

Block supernode factorization operates on groups of columns/rows or even a whole
supernode a t the same time instead of merely focusing on a single column/row. Doing
so does not reduce the number of references to memory by any means, but by grouping
them together memory fetch and store can be made more efficiently, i.e. using the
same index map only once throughout a loop cycle ([6]).
On the other hand, supernode-supernode factorization increases storage overhead
significantly, since the intermediate results for more than one column/row have to
be kept and other da ta structures had to be added to support this technique. In
our tests we have seen memory increase between a t worst 6 t o 20 times over our
supernode-node implementations. Furthermore, the time necessary to do the set up
and administration of these da ta structures cannot be neglected.

5 . Benchmark

We present the timing results for a medium sized linear system stemming from a
simulation of a MOSFET. The linear system has 12,000 unknowns and about 250,000
non-zero entries in the coefficient matrix. The benchmark was run on a Convex C220,
a Cray-2, a Cray Y-MP, a NEC SX-3, and a Cray (398. The numbers shown in Table 1
are those of the best performing factorization algorithm in CPU seconds. For none of

Convex C220 12.93 18.93
Cray-2
Cray Y-MP
NEC SX-3
Cray C98

Table 1: Timing results for the best performing algorithm (seconds)

the machines used in the benchmark we found block supernode algorithms to perform
better than the supernode-node algorithms. Mainly, there are two reasons for that:

For all of the block supernode algorithms implemented we noticed a signifi-
cant increase of scalar memory references. This increase is stemming from the
additional da ta structure handling built into the block supernode algorithms.
Obviously, this hurts especially on machines with scalar da ta caches like the
Convex and the NEC. Here, block supernode methods loose performance by
suffering from scalar da ta cache misses.

A. Liegmann et al.: The Application of Sparse Supernodal Factorization Algorithms

0 Block supernode techniques are most effective when the supernodes contain
marry columns/rows, i.e. when the supernode partitioning consists of a small
number of snpernodes. A small snpernode partitioning provides for bigger
blocks during supernode update. Tn our test cases supernodes contain 5 to
6 coli~mns/rows on average. Additionally, our factor columns/rows are very
sparse (about, 200 non-zero entries maximum) so that there are only a few cases
during the factorization where we can exploit, the potential of the block super-
node algorithms.

In this paper we prese111,ed supernodal techniques suitable for struct,nrally symmetric
linear systems as they appear in semicondi~ctor device simulation. Among these,
supernode-node nptlatirrg schemes perform best, for this type of application. We have
shown that block supernode methods cannot, be exploited to their fill1 potential which
is due to the extreme sparsil,y of the linear systems and small supernode sizes.

7. Acknowledgement

The aothors highly appreciate the support of (:ray Research (Switzerland) for pro-
viding the original source code. Also, we thank the staff of the computer centers of
the Swiss lnst,itutes of 'Sechrrology in Zurich and Lansanne as well as the Swiss Sci-
entific Computing Center in Manno for providing us access to their supercomputers.
Additionally, we are grateflil to J.F. Biirgler and S. Muller (both from the Integrated
System Laboratory) for providing the set of test cases. Our special thanks go to
C. Pommerell (now AT&T Bell Labs) for a number of interesting discussions on the
hallway of the laboratory, and to R.W. Peyton (ORNL) for his help on nrrderstarrtlirrg
the original code.

References

[I] C.C. Ashcraft,, H..R. Grimes, J.G. Lewis, R.W. Peyton, ant1 H.1). Simon. Progress
in sparse matrix methods for large linear systems on vector supercomputers. The
ln,ternaLional .Joum,al of .Yu,percornp,u.Ler Applications, 1(4):10-30, 1987.

[2] (:. Heiser, C. Pommerell, J.Weis, and W. Fichtrrer. Three dimensional numerical
semiconductor device simulation: Algorithms, architectures, results. ItiI3E: 7hn,s-
actions on Computer- Aided Llesign. of ln,tegrated Circuits, 10(10):1218-1230,1991.

[3] A . Liegmann. 'She application of supernodal techniques on the sohition of struc-
turally symmetric systems. 'Sechnical R.eport 9215, Tnstit,ut, fur Integrierte Systeme
(ETH Ziirich), 1992.

[4] A. Liegmann and W. Fichtner. The application of super~iodal factorization al-
gorithms for stmct~irally symmetric linear systems in semiconductor device sim-
ulation. Technical R.eport 92/17, lnstitut fur Irrtegrierte Systeme (ETH Zurich),
1993. Submitted to 7'he In,tern.aLion,al Journal of Supercomputer application,^.

[5] J.W.H. Liu. Modification of the Minimum-Degree algorithm by rm~ltiple elimina-
tion. A CM ill-nn,saction,s on Mathematical Soflware, 11(2):141-153, 1985.

[GI E.G. Ng and B.W. Peytorr. Block sparse Cholesky algorithms on advanced
uniprocessor computers. Technical R.eport TM-I 1960, Oak Ridge National 1,abo-
ratory, 1991.

