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1. Introduction 

It is well known that the solution of sparse linear systems, generally expressed in the 
form Ax = b, is a core task of numerical simulation. In case of semiconductor device 
simulation the coefficient matrix A is unsymmetric, but structurally symmetric ([2]). 
The solution of linear systems can be achieved by iterative or direct methods. While 
iterative methods do not always lead to a solution due to matrix conditions, direct 
methods usually consume more time and memory. 

Figure 1: Updating column J by supernode S 
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2. Computational considerations 

The problem of reducing the memory needed for a direct solver is closely related to  the 
problem of minimizing the size of the LU decomposition as a result of reordering the 
coefficient matrix. In this respect the Minimum Degree reordering algorithm proved 
to  be very successful for general sparse systems. This algorithm has been enhanced in 
terms of execution speed t o  what is referred to as the Mul t ip l e  M i n i m u m  Degree  
algorithm ([5]). 
On the other hand, speeding up a direct solver basically means a faster computation 
of the LU factorization. Extensive research in this area has lead to so-called supernodal 
techniques. The key concept of these techniques is what is nowadays referred to  as 
a s u p e r n o d e  [I]. During symbolic factorization, supernodes are identified as a set 
of consecutive columns in the  f x t o r  L of the LU decomposition with the following 
structural properties. A supernode formed by, s say, adjacent columns consists of two 
blocks: a dense diagonal block of size s x s and a block of width s below the diagonal 
block where all columns share the same sparsity pattern. A sample supernode is 
depicted in Figure 1 denoted with the letter S. Computing column J involves the 
following steps: for all supernodes S updating column J determine vector V1 = M*(D.V) 
and then subtract i t  from the contents of J ,  i.e. J = J - Vl (see Fig. 1). The 
determination of vector V1 involves dense matrix-vector multiplications which run at  
vector speed on today's supercompnters. The subtraction step requires ga.ther/scatter 
operations which are mostly hardware supported on many supercomputers. As a 
result, supernodal techniques make excellent use of the hardware features and thus 
are highly powerful. 

The computational power of supernodal techniques applied to symmetric positive def- 
inite linear systems has been documented in papers like [I]. Since in semiconductor 
device simulation the linear systems are usually unsymmetric but strnctura.lly sym- 
metric, we could apply supernodal techniques t o  Loth factors L (columns) and U (rows) 
simultaneously ([3]). Further enhancements have been added and more recently we 
implemented a whole collection of supernodal factorization algorithms which divide 
into supernode-node and supernode-supernode or block supernode methods ([4]). 

for  J = I to N, d o  
for  j E J ( i n  order )  d o  

fo r  a l l  K updating j d o  
determine V1 and update j 

end for 
s c a l e  j with  diagonal  element 

end fo r  
e n d  for  

Figure 2: General supernodal algorithm 

3. Supernode-node algorithms 

Supernode-node updating describes a technique where only one column/row of the 
factors L and U is computed a t  a time, although the corresponding supernode might 
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consist of several columns/rows. Figure 2 depicts the general framework for algo- 
rithms implementing this technique. A first glance at  the algorithm already reveals 
the general form of supernode-node updating algorithms: a triple-nested for-loop (in- 
dicated with indices 1 through 3). The  outermost loop runs over all supernodes J 
that were generated in the reordering and symbolic factorization steps. The  next 
for-loop (2) goes one level deeper and scans over all nodes j of the current supernode 
J starting with the smallest index. The innermost loop (3) handles the contribution 
of all updating supernodes K t o  the current node j. Finally, column/row j has to be 
scaled by its diagonal element (4). 

4. Block supernode algorithms 

Block supernode factorization operates on groups of columns/rows or even a whole 
supernode a t  the same time instead of merely focusing on a single column/row. Doing 
so does not reduce the number of references to memory by any means, but by grouping 
them together memory fetch and store can be made more efficiently, i.e. using the 
same index map only once throughout a loop cycle ([6]). 
On the other hand, supernode-supernode factorization increases storage overhead 
significantly, since the intermediate results for more than one column/row have to 
be kept and other da ta  structures had to  be added to support this technique. In 
our tests we have seen memory increase between a t  worst 6 t o  20 times over our 
supernode-node implementations. Furthermore, the time necessary to do the set up 
and administration of these da ta  structures cannot be neglected. 

5 .  Benchmark 

We present the timing results for a medium sized linear system stemming from a 
simulation of a MOSFET. The linear system has 12,000 unknowns and about 250,000 
non-zero entries in the coefficient matrix. The benchmark was run on a Convex C220, 
a Cray-2, a Cray Y-MP, a NEC SX-3, and a Cray (398. The numbers shown in Table 1 
are those of the best performing factorization algorithm in CPU seconds. For none of 

Convex C220 12.93 18.93 
Cray-2 
Cray Y-MP 
NEC SX-3 
Cray C98 

Table 1: Timing results for the best performing algorithm (seconds) 

the machines used in the benchmark we found block supernode algorithms to  perform 
better than the supernode-node algorithms. Mainly, there are two reasons for that: 

For all of the block supernode algorithms implemented we noticed a signifi- 
cant increase of scalar memory references. This increase is stemming from the 
additional da ta  structure handling built into the block supernode algorithms. 
Obviously, this hurts especially on machines with scalar da ta  caches like the 
Convex and the NEC. Here, block supernode methods loose performance by 
suffering from scalar da ta  cache misses. 
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0 Block supernode techniques are most effective when the supernodes contain 
marry columns/rows, i.e. when the supernode partitioning consists of a small 
number of snpernodes. A small snpernode partitioning provides for bigger 
blocks during supernode update. Tn our test cases supernodes contain 5 to 
6 coli~mns/rows on average. Additionally, our factor columns/rows are very 
sparse (about, 200 non-zero entries maximum) so that  there are only a few cases 
during the factorization where we can exploit, the potential of the block super- 
node algorithms. 

In this paper we prese111,ed supernodal techniques suitable for struct,nrally symmetric 
linear systems as they appear in semicondi~ctor device simulation. Among these, 
supernode-node nptlatirrg schemes perform best, for this type of application. We have 
shown that  block supernode methods cannot, be exploited to their fill1 potential which 
is due to the extreme sparsil,y of the linear systems and small supernode sizes. 
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