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Abstract 

Fundamental problems of and approaches to modeling nanostructure devices 
are reviewed. First the requirements for modeling charge transport in classical 
and nanostructure devices are compared and contrasted. Then the quantum 
mechanical concepts of transmissioli probabilities and eigen energies in nanos- 
tructures are related back to the classical concepts of resistance and capacitance, 
respectively. Next a small illustrative sampling of numerical approacLes to call 
culation of the auantum mechanical properties of nanostructures is presented. 
Finally examplei are given of how sucil theoretical concepts and numerical 
methods can be applied to modeling existing and future devices. 

1. Introduction 

In conventional semiconductor devices, most quantum transport effects can be treated 
indirectly. The effects of the rapidly varying crystal potential on electron transport 
can be modeled via the concepts of effective masses, energy gaps, and the positively 
charged quasi-particle holes. On the macroscopic level, charge transport can the11 
be modeled using the concepts of classical mechanics, aided sometimes by the Pauli 
exclusion principle and the Born approximation for scattering problems. Only the 
possibility of electron-hole recombination across the energy gap and the corresponding 
non-conservation of particle numbers bears witness to the deeper quantum mechanical 
character of the problem. 

Of course, size quantization effects do appear in some conventional devices. The 
conduction channel of a MOSFET extends only a few nanometers from the Si-Si02 
interface into the silicon and, thus, the charge carrier motion perpendicular to the 
interface is quantized. I-lowever, charge transport over the oxide barrier is usually 
negligible, and the carriers can be treated as quasi two-dimensional particles in the 
plane of the conduction channel and still be modeled semi-classically. Hoy far the 
dimensions of the conduction channel can be shrunk in this latter plane before quan- 
tization leads to prominent effects is currently the subject of speculation. 

In addition to quantization effects, the current mainstays of semiconductor device 
technology, electron and hole gases and the formation of homojunctions by doping, 
also present barriers to shrinkage as the desired step from the vacuum to the dense 
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solid has not been achieved entirely after the invention of the point contact transistor 
by Bardeen and Brattain in 1947 [I]. On the nano-scale, doping is inhomogeneous and 
majority carriers and particularly minority carriers form dilute gases in conventional 
devices [2]. If shrinkage is to substantially continue, the homojunction and these 
dilute gasses must yield to heterojunctions and Fermi-liquids. The increased use of 
heterojunctions in silicon technology and the interesting science surrounding super- 
lattices and most recently nanostructures and mesoscopic systems indicate motion in 
this direction. 

Nanostructures and mesoscopic systems currently provide an interesting playground 
for applications oriented science [3, 41. From an engineering point of view, the mech- 
anism that will make nanostructure devices tick and permit integration on a gigantic 
scale has yet to be found. In our opinion, however, nanostructure devices will involve 
regions of significantly unbroken carrier phase extending over many atomic distances, 
mesoscopic systems or structures, alternating with regions where phase coherence is 
broken and excess carrier energy is dissipated, reservoirs, such as contacts and inter- 
connects. Within these mesoscopic structures current will be carried by charge carrier 
transport within, over and (via tunneling) through heterojunction barriers. Further, 
these devices will exhibit problems of multi-scale; nanostructure regions, governed 
by quantum mechanical properties, will be connected to much larger regions, where 
classical transport models are appropriate. These envisioned transport mechanisms 
already are evidenced in existing devices containing nanostructures such as quantum 
well lasers and the now familiar resonant tunneling diode and, therefore, set the stage 
for the modeling and simulation tools that must be developed. 

2. Basic physical theories 

Quantum transport theory encompasses a wide range of phenomena including super- 
conductivity, quantum Hall effect, tunneling, non-parabolic and multi-band energy 
band structures, carrier-carrier interactions and carrier-phonon interactions. Never- 
theless, it is often possible to translate the quantum theoretical problem of carrier 
transport in nanostructures into conventional engineering concepts such as of resis- 
tance, capacitance and inductance. Below, only resistance and capacitance are ad- 
dressed due to spatial limitations. Quantum inductance is discussed extensively in 
Ref. [5 ] .  
The Landauer-Buttiker theory allows direct calculation of charge currents and in- 
terpretation of resistance in terms of quantum mechanical transmission coefficients 
[6, 7, 81. The Landauer-Buttiker theory, as well as the Bardeen transfer Hamiltonian 
approach [9], view the mesoscopic (phase coherent) region on the basis of scattering 
theory, i.e. as simply an object that scatters the charge carrier's wave function. A 
simple classical analogy to this approach is the use of thermionic emission theory 
within a drift-diffusion simulator where transport over a heterojunction barrier from 
one reservoir to another is characterized by the classical transmission coefficient, a 
step function in energy. Extending this latter method to include quantum mechan- 
ical transmission coefficients, as for a tunneling diode, gives for the electron current 
density perpendicular to the barrier(s) Jlz  [lo, 111, 

Here, e is the (negative) electron charge, the leading factor of 2 accounts for spin 
degeneracy, T is the transmission probability, fi(E) and f i (E)  are the occupation 
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probabilities for the electrons as a function of total energy in their respective reser- 
voirs, and E,,,, is the greater of the two minimum conduction band energies of 
the reservoirs. The Landauer-Biittiker theory generalizes this approach to  arbitrary 
mesoscopic geometries and multiple reservoirs. Specifically, in the linear response 
regime, the current 112 flowing from one reservoir to a second via some mesoscopic 
structure (perhaps in addition to the current flow to and from other reservoirs) is 
given by [7, 81 

Here, p1 and pz are the respective chemical potentials of the two reservoirs, and the 
T,,,, .are the transmission probabilities between the states of the two reservoirs at the 
Fermi-surface energy. Because (111- pz)/e represents the voltage drop V between the 
reservoirs, the conductance can be identified in terms of the transmission coefficients 
as 2(e2/h) En,,,, T,,,, . This formula, Eq. (2), is readily generalized beyond the linear 
response regime and for high temperatures; however, in either, case the transmission 
coefficients do not incorporate dissipative processes within the mesoscopic region. 
Sinele electron transmission coefficients can be generalized to include dissi~ative oro- " u 

cesses, but the significance of this generalized concept becomes unclear when Pauli 
exclusion effects must be considered simultaneously [12, 131. Examples of familiar de- 
vice geometries where the Landauer-Biittiker approach may be applicable include the 
transition region between the source contact and the quasi-two-dimensional channel 
of a MOSFET, and the region about an undoped quantum well within the heav- 
ily doped classical transport regions in a semiconductor laser. This approach has 
also been extremely successful in explaining a large amount of experimental results 
for nanostructures including conductance steps for transport through ultrasmall con- 
strictions [3]. 
As transmission coefficients are converted to resistance via Landauer-Buttiker theory, 
the energy spectra of nanostructure systems can be converted to capacitance. The 
capacitance C of an isolated island or dot of conducting material is defined as the 
ratio of the stored charge Q in the dot to the voltage V of the dot [14], or, in a 
form more conducive to nanostructure applications, C = e2(N/p) where N is the 
total number of electrons within the dot and p is the chemical potential of the dot. 
Similarly, the differential capacitance, C d  - AQIAV, is given by [15], 

where the chemical potential p(N) is given by, 

Here, E ( N )  is the total energy of the N-electron system. In metallic systems, capaci- 
tance and differential capacitance are effectively independent of N 1141, even in many 
structures exhibiting coulomb blockade effects where p changes in discrete steps on the 
scale of the thermal energy with the addition of single electrons to the dot (3, 4, 161. 
However, in semiconductor nanostructures with few electrons, capacitance does de- 
pend on N due to the electrostatic interactions among the electrons, size quantization 
contributions to  the energies E ( N )  and Pauli exclusion effects 115, 17, 181. 
The interpretation of conductance in terms of electron transmission probabilities, 
via Landauer-Buttiker theory, and capacitance in terms of multi-electron energies, 
reduces the problem of calculating nanostructure device parameters to one of solving 
the Schrodinger equation for one or more charge carriers within regions of phase 
coherence. Numerical methods for accomplishing this latter goal are considered next. 
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Figure 1: Conductance (in units of 2ez/h) as a function of energy (in units of the 
transverse ground-state energy of of the leads) for two similar mesoscopic structures, 
shown in the inserts. The exact conductances are indicated by solid lines, while the 
dashed lines are the simple (classical) sum of the conductances of the upper and lower 
channels in the absence of the other. (After Ref. [19], 01992 The American Physical 
Society.) 

3. Numerical methods 

There are many numerical approaches to calculating the required transmission coeffi- 
cients and energy spectra for charge carriers in nano-scale systems. Here, however, we 
have room to discuss only a few. A common feature of two of the methods discussed is 
that each attempts to model a many particle problem: one, electron transport in the 
presence of phonons and, the other, the effects of coulomb and exchange interactions 
within many electron systems. 

One computational efficient method for simulating electron transport in multi-dimen- 
sional mesoscopic structures employs a mode matching technique [19]. The analyzed 
structures are assumed to  be defined by hard walls (i.e., potential walls of infinite 
height) and separable into rectangular sections. Within each of these sections at a 
given energy, the wave function solution of the time-independent Schrodinger equa- 
tion can be written as the sum of the products of propagating and evanescent modes 
in the longitudinal direction and standing waves in the transverse direction. At each 
interface, enforcing the continuity of the wave function and its normal derivative 
produces a linear system of equations with a sparse coefficient matrix that can be 
efficiently solved. Because of the efficiency of the method but restrictions on device 
geometries, this method is best suited for addressing fundamental questions of quan- 
tum transport such as how do conductances add in mesoscopic structures, as in the 
calculations of conductance, via Eq. (2), in the examples of Fig. 1. 

A more computationally intensive but more flexible approach to simulating trans- 
mission through multidimensional mesoscopic structures is based on solution of the 
time-dependent Schodinger equation 1201. This method features robust open bound- 
ary conditions and an arbitrarily variable potential function that allows simulation 
of the transient through steady-state transport in a broad range of mesoscopic struc- 
tures, and has recently been updated to allow calculation of week dissipative cou- 
pling to phonons when Pauli exclusion effects are not critical [21]. Specifically, if the 
Schrodinger equation for an electron-few-oscillator (few-phonon-mode) system, 
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is solved numerically, quantum transport with first order accurate phonon scattering 
can be treated within the limits of the single electron picture. Here, V ( 3  is the 
applied potential seen by the electron within the mesoscopic structure, and the nk are 
the discretized coordinates of the few K oscillators corresponding to their uncoupled 
eigenstates. The coupling functions Mk(3  are obtained stochastically as, 

where the M,(F) are the coupling functions for the true electron-phonon system for 
phonon modes p', and the A, are random numbers ((A,-) = 0, (A,-AT) = S g )  such that 
the Mk(3  have the spatial correlation function characteristic of the original system's 
coupling functions, 

( M ~ ( T ~ M ~ ( ~ ) )  = C M ~ ( ~ M , - ( ~ ) .  
d 

(7) 

Because the correlation function on the right-hand-side of Eq. (7) is the common 
factor of all first order calculations in the electron-phonon coupling (as, for example, 
in "golden rule" calculations of scattering rates), the identity of Eq. (7) assures, on 
average, the equivalence of the true multiphonon system and the few-oscillator sys- 
tem of Eq. (5) to first order. As the number of samples A' is increased, the sampling 
error is reduced and second and higher order artifacts of using a small oscillator sys- 
tem are reduced a t  least as 1/K, while some true higher order process are retained. 
Figure 2 shows simulation results for emission of 50meV polar optical phonons by 
an approximately 50meV electron incident through a quasi-one-dimensional quantum 
wire into a quasi-two-dimensional semiinfinite plane, each 50W thick in the direction 
perpendicular to the plane of the simulation. The ground-state energy of an elec- 
tron within the wire is approximately 40meV such that real (as opposed to virtual) 
phonon emission is only possible within the semiinfinite plane. Twenty samples of 
M k ( q  were used, and much of the fluctuation in Fig 2(d) is due to sampling er- 
ror. However, the calculated probabilities of reflection (inherently without phonon 
emission), transmission through the simulation region without phonon emission, and 
transmission with phonon emission are 14.6%, 64.5% and 20.9%, respectively, all to 
within approximately f 3% RMS deviation. 

Calculation of the energy spectrum and, in turn, the capacitance for several electrons 
in a small island of material, requires balancing a desire for rigor with computational 
resources. One approach that appears well suited to the task is the local density 
functional formalism [15]. For this method, the Schrodinger equation that must be 
self-consistently solved for each electron i in the presence of the others j is, 

Here, $i(<) is the wave function for the ith electron, I/b(Fi) is the built in potential 
of the dot of material and any applied potential, and V,  is the coulomb interaction 
term among the electrons given by, 
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Figure 2: (a) Potential energy function and (b) probability density function for an 
uncoupled electron. (c) Probability density for the corresponding coupled electron- 
phonon system in the ground-state of the uncoupled phonon system (prior to phonon 
emission) and (d) the probability density in an excited state of the phonon system 
(after phonon emission). The peaks in the probability density have been cutoff to 
allow viewing of the regions of lower probability. (After Ref. [21].) 

where N is the total number of electrons in the dot and €0 and 6, are the absolute 
and relative dielectric constants, respectively. Nearby metallic electrodes (gates) can 
also be modeled via the method of images. I&(<) and V,,(<) are the exchange and 
correlation terms, respectively. These latter terms have received extensive attention 
in the recent literature, and the easiest representations to include for a thin layer of 
charge in numerical calculations are the polynomial expressions from the theory of 
Tanatar and Ceperley [22]. Figure 3 shows the calculated differential capacitance, 
Eq. (3), vs. electron number for an isolated small quasi-two-dimensional box with 
hard walls and a quasi-parabolic confinement potential due to a uniformly distributed 
positive charge of 1001e(. 

4. Current and future device applications 

The computational problems encountered in numerical simulation of quantum well 
lasers are illustrative of those that can be expected in general nanostructure simula- 
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Figure 3: Differential capacitance vs. electron 
number for an isolated 160nmx 120nm quasi- 
two-dimensional box with hard walls and a 
quasi-parabolic confinement potential due to Figure 4: Grid used for numeri- 
a uniformly distributed charge of 100(el. The cal simulation of charge transport 
inset shows the self-consistent potential for 10 within a semiconductor quantum 
electrons. (After Ref. [15] .) well laser. (After Ref. [23] .) 

tions. For a laser, the width of the quantum well region(s) relative to the entire 
laser thickness is as an inch to the height of the Sears Tower in Chicago and, thus, a 
grid system is required that provides suitable resolution both within and outside the 
quantum well region, as shown in the neighborhood of the quantum well in Fig. 4 [23]. 
The explosion of grid points near the well clearly demonstrates the multi-scale nature 
of the problem. Further, outside of the quantum well, simple classical drift-diffusion 
theory provides a good model of charge transport, while quantum mechanical calcula- 
tions are required to obtain the energy spectrum and density of states for the charge 
carriers within the well to model photon emission. Thus, the question is one of how 
to connect these regions, and a straightforward solution answer lies in the spirit of the 
Landauer-Biittiker and Bardeen transfer Hamiltonian approaches. To a large extent, 
the entire quantum well region can be treated as a scattering (recombination) center 
within the drift diffusion simulator. Carriers within and above the well then can 
communicate with each other by a multipoint approach, as in the case of thermionic 
emission [23]. A rather complex understanding of laser switching, phonon emission 
and carrier-carrier interactions is still required to model carrier capture in the quan- 
tum well, but at least for quasi-two-dimensional quantum wells such information is 
available. For quantum dot lasers, if indeed carriers can be collected efficiently by 
quantum dots, an approach such as that of Eq. (5) will be required to model the 
process. 
One particularly intriguing device concept of the future is the single-electron tran- 
sistor [3]. The basic component of such a device will be a dot of material in which 
the chemical potential changes discretely on the scale of the thermal energy with the 
number of electrons. For metallic dots, the total energies can be calculated from 
E ( N )  = (Ne)2/2C where the capacitance C is effectively a geometry dependent con- 
stant only. However, in semiconductor nanostructures with few electrons, calculation 
of the the multi-electron energies will require an approach such as that of Eqs. (8) 
and (9). These energies can then be translated into chemical potentials and capaci- 
tances via Eqs. (3) and (4). If the dot is loosely coupled to an external reservoir via a 
mesoscopic barrier or other structure, a current will flow according to the differences 
in chemical potentials as described by Eq. (2). However, because the chemical po- 
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tential of the dot changes discretely with the number of electrons, coulomb exclusion 
and blockade effects can prevent or control current flow as evidenced by the periodic 
conductance oscillations reported in many publications [3, 4, 161. A gate (perhaps 
another dot) then can be used to control the energy spectrum of the dot and, thus, 
conduction through the dot to provide transistor action. 
In conclusion, the development of theory and computational resources is now at a 
stage that much of nanostructure electronics can be understood and simulated. How- 
ever, deep seated problems remain with regard to the multi-scale and many-body 
aspects of nanostructure systems. 
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