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Abstract 

For situations where Gummel's decoupling scheme is applicable a multigrid al- 
gorithm for the continuity equations fully consistent with the usual Scharfetter- 
Gummel discretization can be used to solve the van Roosbroeck equations. The 
main problems for applying a multigrid algorithm are that discrete spaces are 
not nested in the usual sense for the refined grids because of the Scharfetter- 
Gummel discretization and that problem coefficients vary strongly. Transform- 
ing the equations to symmetric form and applying a block MILU decomposition 
based on the coarse-fine splitting of the discrete spaces with a perturbed Schur 
complement defines the prolongation and restriction operators. The transfor- 
mation back to the original variables is possible. Coarse grid matrices are 
M-matrices. 

Let M o ,  . . . Mi be a sequence of Euclidean vector spaces with growing dimension. 
In order to define a standard multigrid algorithm to solve the continuity equation of 
the van-Roosbroeck system A,u = f on the j- th level there zeed to be the following 
components (in the terminology of [ 2 ] ) :  

- scalar prod~icts ((., .))k : Mk x Mk -+ R 
- symmetric, positive definite with respect to ((., .))k operators Ak : M k  --+ Mk,  
- interpolations Ik : Mk-l -+ Mk 
- restrictions Pt : Mk -+ Mk-l .  
- smoothers Rk : Mk -+ M k  

While the smoothers Rk are provided by one or more steps of a classical itera- 
tion method (Jacobi, Gad-Seidel, ILU), the design of other components in cases of 
strongly varying coefficients or missing standard finite element background is unclear. 
Here, we try a 'semi-algebraic' method as described in previous stages in [4, 5 ,  61. 
Rather similar ideas of constructing multigrid or multilevel preconditioners have been 
used in [I, 3, 9, 101. 

In what follows, we abbreviate the level-k-indices, to mean a fine grid corresponds to 
space Mk,  a coarse grid then corresponds to Mk-l 
On a three-dimensional grid with quadrilateral cells generated by standard refinement 
from a coarser one, we have the splitting of the grid vertex set V( A) = VCUVFUVEUVN 
into sets of coarse grid cell midpoints, coarse grid cell face midpoints, coarse grid 
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cell edge midpoints and coarse grid node points, respectively. We get the matrix 
partitioning 

where the off diagonal blocks are nonpositive and the diagonal blocks Ac = AcF+Mc, 
AF = AFC t AFE t MF, AE = AEF t AEN +ME and AN = ANE t MN, are positive 
diagonal matrices which consist of sums of off diagonal row entries and a nonnegative 
"mass" term. The assumptions made on A imply at least one entry of the "mass" 
M, is positive. 

Let & = AFE + MF, AE = AEN + ME, and choose 

U can be seen as a transformation matrix to an approximate harmonic basis [7]. Then 
for .T being the transposition with respect to the ((.,.))-scalar product we have 

with A = F - T ( A l ~  - AllF-lG) and S = 3 t AT(F-TA1lF-l)-lA, and 3 = Azz - 
A21(All)-'A12 is the Schur complement. To create a block diagonal preconditioner 
for A in the new basis, one takes the decomposition (1) and omits the off diagonal 
blocks A. Omitting the error correction in the fine grid part, too, yields a coarse grid 
correction by projecting the error vector onto the fine grid space in the new basis. It 
has the form 

0 0 B = U-I ( s-l ) u-T = 1~s-1~; 

and Pf being its ((., .))-adjoint. S is the Galerkin coarse grid operator corresponding 
to the given choice of the intergrid transfer operators: 

Some geometrical considerations and numerical experiments suggest that in the sense 
of spectral equivalences, it should hold that S E ~(AN-BNEAE'BEN) =: Ak-1, when 
the coefficients are not too strongly varying. This suggests replacing S by Ak-1 in B. 
At the other hand, Ak-l is the Schur complement of the positive definite matrix 
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and inherits the ((., .))-symmetry, the M-property, and the seven-diagonal structure 
of A, so the process described above can be continued recursively. To ensure the 
preservation of the M-property in a floating point representation, one has to choose 
a matrix data structure where, on all the levels, instead of the main diagonal entries 
of A,  the difference between these entries and the sum of the remaining entries of the 
same column is stored. 

It can be shown [4] that for ((., .))-symmetric, positive definite operators, the conver- 
gence of a multigrid method with components defined this way depends on a number 
of reasonable factors: 

- the spectral equivalence of All and F, and of All and its diagonal; 
- t,he cosines of the angles between coarse grid and fine grid spaces in the A-energy 

scalar product; 
- the spectral equivalence of S and Ak-l; 
- a smoothing property for Rk, which for Jacobi and GauB-Seidel smoothers is 

valid for any symmetric M-matrix [l 11 

The whole multigrid operator described above is selfadjoint in the ((., .))-scalar prod- 
uct provided the smoothers are selfadjoint. Without smoothing, the MG-operator has 
a special recursively defined MILU decomposition interpretation. One can use it as 
a preconditioner for conjugated gradients in this scalar product. If one considers the 
Scharfetter-Gummel discretization of carrier transport equations in semiconductors, 
the discrete operators are selfadjoint with respect to a scalar product using a weight 
e*4 where 4 is the electrostatic potential. 

Here, we compare the algorithm above with a classical iterative one - ILU(1) pre- 
conditioning using Chebyshev polynomials and CG with weighted inner product. 

The pictures show results for a photo diode with n~ultiple differently doped horizontal 
layers. The aim is to deplete the whole diode and to compute the recombination 
current. The kink at 3.5V in the I-U-curve is what the designers are looking for. The 
Gummel iteration has been stopped at lo-' UT to fulfill the current balance better 
then A second example shows the results for a MOSFET at the lMBit DRAM 
design level. 

MEDEA, photo diode, Multigrid versus iterative method, 3 grids: 
130977 = 49 x 33 x 81, 17425 = 25 x 17 x 41, 2457 = 13 x 9 x 21 points, CONVEX C220 



424 J.  Fuhrmann et al.: Multigrid Becomes a Competitive Algorithm for some 3D Device 

MEDEA, 'half-MOSFET', lMBjt DRAM design level, Ubulk = -2V, Udrain = O.lV, 
156849 = 97 x 33 x 49, 20825 = 49 x 17 x 25,2925 = 25 x 9 x 13,455 = 13 x 5 x 7, 

84 = 7 x 3 x 4 points, DEC ALPHA (3000/500,64MB) 

References 

[I]  0. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods, 
111. preprint, Cath. Univ. Dept. of Math., Nijmegen, 1990. Report 9045. 

[2] J.H. Bramble, J.E. Pasciak, and J .  Xu. The analysis of multigrid algorithms with 
nonnested spaces or noniherited quadratic forms. Math. of Comp., 56:l-34, 1991. 

[3] W. Dahmen and L. Elsner. Algebraic multigrid methods and the Schur comple- 
ment. In W. Hackbusch, editor, Robust Multigrid-Methods, volume 23 of Notes on 
numerical Juid mechanics, pages 58-69. Vieweg, Braunschweig, 1989. 

[4] J. Fuhrmann. On the convergence of algebraically defined multigrid methods. 
preprint no.3, Institat fiir Angewandte Analysis und Stochastik Berlin, 1992. 

[5] J .  Fuhrmann and K. Gartner. A multigrid method for the solution of a convection 
- diffusion equation with rapidly varying coefficients. In [a]. 

[6] J .  Fuhrmann and K. Gartner. Incomplete factorizations and linear multigrid 
algorithms for the semiconductor device equations. In El. Beauwens and P. de 
Groen, editors, Proccedings of the IMACS international symposium on iterative 
methods in linear algebra, pages 493-503, Amsterdam, 1992. Elsevier. 

[7] G. Haase, U. Langer, and A. Meyer. The approximate Dirichlet domain decom- 
position method. part I: An algebraic approach. Computing, 47:137-151, 1991. 

[8] W. Hackbusch and U.  Trottenberg, editors. Proceedings of the Third European 
Multigrid Conference, October 1 - 4,1990, Bonn, Germany, volume 98 of ISNM, 
Basel, 1991. Birkhauser Verlag. 

[9] Yu. A. Kuznetsov. Multigrid domain decomposition methods. In T.F. Chan, 
R. Glowinski, J .  Periaux, and O.B. Widlund, editors, Proceedings of the Third 
International Symposium on Domain Decomposition Methods for Partial Differen- 
tial Equations, Houston, Texas, hfarch 20-22,1989, pages 290-313, Philadelphia, 
1990. SIAM. 

[lo] C. Popa. ILU decomposition for coarse grid correction step on algebraic multigrid. 
In Hackbusch and Trottenberg [8]. 

[ l l ]  J.W. Ruge and K. Stiiben. Algebraic multigrid. In S. McCormick, editor, Multigrid 
methods, volume 4 of Frontiers in Applied Mathematics, chapter 4, pages 73-130. 
SIAM, Philadelphia, 1987. 




