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Abstract 

Our particle Monte-Carlo program for device modelling (MONACO) has been 
extended to the third dimension in geometric space. We describe the main 
features of this model. It has been used to simulate a 0.1 pm-gate-width 
N-channel MOSFET. Important geometric edge effects occur and induce a 
reduction of the effective gate width. 

1. Introduction 

The scaling down in present ULSI technologies' constrains the device physicists to 
take into account at the same time the non-stationary transport /l-3land the three- 
dimensional effects in the geometric space 14~51. The particle ensemble Monte-Carlo 
technique is actually the most accurate device modeling method that can meet these 
requirements. So, we have extended our particle Monte-Carlo model to three-dimensional 
(3D) simulations. Some important points of this new 3D model are presented. We 
described also some precautions that must be taken to obtain accurate simulation results. 
Finally, we present a steady-state analysis of a N-channel MOSFET having a short gate 
width (W=O. 1 pm) and a small ratio W/L (W/L=O.l). This analysis shows off important 
edge effects that influence the device performances. 

2. The model 
The carrier motion, that was previously described /2*6/, is unchanged. The potential 

distribution in the device is calculated from Poisson's equation using a finite-element 
formulation in a non-uniform rectangular meshing. Poisson's equation is then solved 
using a L.U. method. The electilc field components are calculated by derivation of the 
distribution potential. A rectangular meshing facilitates the detection of the cell changes 
during the motion of each carrier, which is required to up-date the local electric field acting 
on the carrier. The boundary conditions in the solution of Poisson's equation consist in 
imposing the potential at every contact surface (Dkichlet condition). Elsewhere on the 
boundary the normal component of the electric field is taken equal to zero (Neumann 
condition). Consistently with Neumann condition a carrier reaching such a boundary is 
reflected. A carrier reaching an ohmic contact is free to leave the device through this 
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Figure I:  Voltage drop iiz a cell acljaceizt to a~z ohinic contact ( N ~ = I o I ~  c i ~ z - ~ )  as nJi~izction 
of the equilibriuin ~zl~inber ofpai-ticles "0. 

contact. In the cells adjacent to an ohmic contact the equilibrium carrier concentration is 
assumed to be recovered (n=ND or p=NA). So, before each resolution of Poisson's 
equation, a lack of caniers appearing in such a cell is compensated by injection of carriers. 
Its initial energy and molnentuin are specified by a Maxwellian distribution. This last 
boundxy condition is the only condition of ii~jection of carriers in the device. 

A s  in all dynamic model based on the solution of Poisson's equation the time and 
spatial grids must meet requirements related to physical constants of time and spatial 
relaxation. In one hand, the time step At between two up-dates of the electric field 
distribution must not be greater than the dielectric relaxation time in the heavily doped 
regions (At=5 fs for a doping level of 1018 cm-3 in Si). This ensures that the carrier 
population can relax after every local perturbation without enor  due to the "frozen" local 
field. In the other hand, in regions where the potential is likely to vaiy spatially, the mesh 
size must be less than the length of variation, i.e., the Debye length (LD) that can be as 
small as 4 nm for a carrier concentration of 1018 cm-3. 

Furthermore the choice of the volume of the cells adjacent to ohmic contacts 
appears (especially in 3D modelling). It is related to the particle nature of the model and to 
the boundary conditions applied at ohmic contacts. As above mentioned, a lack of carrier 
in a cell adjacent to an ohmic contact is quasi-immediately compensated by injection of 
carrier. Such an algorith~n leads to an average excess of about one carrier compared to the 
equilibriuin number no (that corresponds to a number of particle n equal to the number of 
impurities NU). The system tends to relax the relative excess of carrier equal to l/no by re- 
adjustment of the electric field. This effect is of course all the more important that no is 
low. 

In Fig. 1 the voltage drop in a cell adjacent to an ohmic contact ( ~ ~ = 1 0 ~ 8  ~ m - ~ )  is  plotted 
as a function of the equilibrium number of particles no. The variation of no was obtained 
by varying the mesh spacing. For no I 1 the voltage drop increases rapidly with 
decreasing no, which can lead to strong pellurbations in the overall potential and carrier 
distribution in the device. A value of no greater than one seems to be required to maintain 
low levels of potcntial fluctuations in ohinic contacts. 
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The choice of the cell sizes L is thus subject to two conditions: (i): L 5 LD in regions 
where the potential is likely to vary. (ii) the cell volume must be large enough near ohmic 
contacts so that no > 1. 

3. 3D modeling of a N-MOSFET 
To point out the three-dimensional effects, we have compared the behavior of two 

N-channel MOSFETs using the 3D algorithm. The gate length and the oxide thickness are 
respectively 1 pm and 20 nm. The doping level of acceptor impurities in the channel is 
NA=4x1016 ~ m - ~ .  The N+ regions of source and drain contacts are doped to 
~ ~ = 1 0 1 8  cm-3.The gate widrh of the first MOSFET is assumed to be boundless. In fact 
we have simulated only a 0.3 pm wide slice with imposing Neuinann boundary conditions 
at the edge of the device perpendicular to the gate length. The gate width of the second 
MOSFET is limited to 0.1 pm (W/L=0.1) all other things being equal. The drain 
characteristics in both cases well saturate. The transfer characteristics of both transistors 
are plotted in Fig.2. For comparison, the currents are plotted for a normalized gate width 
of lmm. One can notice that the drain currents are smaller for the 0.1 pm-gate-width 
MOSFET (at least 30% smaller according to VGS)  The lower currents are due to a 
reduction of the effective gate width, which is shown in Fig.3. It is a plot of the potential 
and electron concentration in the inversion layer along the width of the device 
(VGS=VDS=5 V). The voltage drop between the gated and the ungated region is partially 
applied on the gate edges, which originates the reduction of the effective gate width. This 
effect induces also a shift of threshold voltage. The values of VT can be derived from the 
square of the drain current against VGS curves. The 0.1 pm-gate-width device exhibits a 
value of VT greater than the boundless gate device of about 0.3 V (1.3 V instead of 1 V). 

Figure 2: Transfer characteristics of the Figure 3: Potential (solid line) and electron 
boundless gate width MOSFET concentration (dashed line) in the 
(squares) and the 0.1 p1n gale width inversion layer along the width in the 
MOSFET (circles). nzidclle of the device. 

Another 3 D  effect occurs beyond the pinch-off point at the end of the channel near the 
drain of the 0.1 pm gate width MOSFET; the cument partially flows down into the bulk of 
the device (Fig.4a), as in large gate width MOSFET, but also spreads outside the gate 
(Fig.4b). 
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Figure 4: The electron distribution in the 0.1 pn gate width MOSFETfor VGS=5 V and 
vDs=5 v. 

4. Conclusion and perspectives 

Despite its large computational requirements, the 3D particle Monte-Carlo model is 
very suitable for studies of actual and future low size devices that can be subject to 
important 3D effects and non-stationary transport effects. We have presented the case of a 
small gate width MOSFET that could be designed for integrated circuits. This model could 
also treat effectively the case of nanometric gate FETs intended for microwave 
applications, for which W/L >> 1 is required. In such conditions the fluctuations of gate 
length along the width could perturb the device operating and performances. Our model is 
also suitable to the analyze of the behavior of devices under radiation that is a 3D 
phenomena. 
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