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Abstract 

An accurate and efficient method is investigated to solve Schrodinger's equation 
by using variational techniques. The electronic states inside heterostructure 
devices are determined by a self-consistent solution of Poisson's and Schrodin- 
ger's equations. The closed forms of the wave functions are used to calculate 
the two-dimensional scattering rates in these structures. The computational 
efficiency is compared to that of conventional finite difference models. 

1. Introduction 

The existence of the  two-dimensional electron gas (2DEG) in the  vicinity of a het- 
erointerface inside heterostructure semiconductors requires a n  accurate method to cal- 
culate t h e  scattering rates and t o  determine t h e  carrier transport properties in  these 
structures. We believe that  the solution of Schrcdinger-Poisson system of equations 
will become a common simulation tool for ultra-small and heterostructure devices. 

A number of authors investigated different models [l-31 which were based on the  finite 
difference approach to solve Poisson's and Schrodinger's equations self-consistently. 
We have solved Schrodinger's equation by using variational methods t o  obtain t h e  
wave functions in  terms of a number of expansion functions [4]. In the  present work, 
this method is applied to  determine the electronic states in an AlGaAslGaAs single- 
well heterostructure by solving Schrodinger's and Poisson's equation self-consistently. 
The  two-dimensional scattering rates are then advantageously calculated using t h e  
obtained closed forms of the  wave functions. T h e  computational speed of this method 
is compared to tha t  of conventional numerical models. 

2. Model 

T h e  effective mass, one-dimensional Schrodinger equation is given by 
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where V ( x )  means potential energy, E Eigenenergy, $(x) wave function corresponds 
to the eigenenergy E, m* effective mass, and F, Planck's constant. For a semi- 
conductor structure of width a ,  the eigenfunction satisfies the boundary conditions 
$(0) = 0, $(a) = 0. The wave functions can be expanded as 

The accuracy of the solution depends on the number of Rayleigh-Ritz functions N. If 
N is infinite, the obtained wave functions are identical to the true ones. However, a 
finite N still leads to very good accuracy. The coefficients ank are obtained by means 
of variational integrals whose stationary values correspond to the true eigenvalues 
when the true eigenfunction are inserted in the integral. The variational integral for 
E is given by 

The condition that (3) should be stationary is satisfied if the first-order variation in 
E vanishes for an arbitrary first-order variation 6$ in $k. Applying this condition, 
the following set of equations is obtained: 

Solving these equations, the subband energies and the corresponding wave functions 
are determined. The electrostatic potential is then calculated by solving Poisson's 
equation. Knowing the electrostatic potential, the new potential energy function is 
calculated. For the next iteration, the effective potential energy function is expressed 
as a linear combination of its new and old values. The potential energy function is 
used to determine the wave functions which are then used to recalculate the carrier 
distribution. The procedure is repeated until initial and final values of V(x), within 
the same iteration, differ by less than a specified error. 

3. Two-dimensional scattering rates 

The two dimensional scattering rates are calculated by defining the matrix element 
for scattering between the ith and the j t h  subbands according to 

where Q, qare the phonon wave vector components in parallel and normal to the 
hetero-interface, and Iij(q) means overlap integral 
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$(x) is the normalized envelope wavefunction. The closed form of the wavefunctions 
(2) decreases the required CPU time for calculating the 2D scattering rates compared 
to that of numerical integrations [I]. 

4. Application t o  an  A10.7Ga0.3As/GaAs heterojuction 

An A1GaAslGaA.s heterojuction is considered with N = 102'cm-3 in a 0.09 pm 
GaAs layer and N = loz3 crnW3 in a 0.018pm AlGaAs layer. Both Rayleigh-Ritz 
and finite difference methods are applied to calculate the subband energies and the 
corresponding wavefunctions (Fig. 1). The numerical efficiency of the finite difference 
method is deteriorated by discretization and mesh size [3]. The wave functions are 
iust numericallv obtained so that anv further awvlication of these wave functions to 

. L  

calculate the scattering rates requires large CPU time because all quantities have to 
be calculated numerically [I]. Using Rayleigh-Ritz method, the required CPU time 
(Fig. 2b) to calculate the 2D scattering rates (Fig. 3)  versus the number of subbands is 
nearly constant while it greatly changes using the finite difference method (Fig. 2a). 
This makes the application of the present method more practical in particular for 
device simulation. 

5 .  Conclusion 

An efficient variational method is applied to determine the electronic states inside het- 
erostructure semiconductors by a self-consistent solution of Poisson's and Schrodinger's 
equation. Using this technique, the wave function is obtained in closed form which 
decreases the CPU time required for the calculation of the two-dimensional scattering 
rates. Moreover, the present method overcomes the limitations of the finite difference 
method which arise from mesh size and discretization. 
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Pig.1 The self-consistent solution for the lowest 
five subband energies (dotted Lines), the 
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Pig.2 Tbe required CRI time to calculate the 2D 
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Pig.3 Tuo-dimensional electron gas polar optical 
scattering rates in the first five subbands versus 
electron energy. Solid lines stand for phonon 
absorption and dotted lines for pbonon emission. 
(a) intrasubband scattering. 
(b) intersubband scattering for the first subband. 
(c) intersubband scattering for the aecond subband. 




