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Abstract 

The electronic van Roosbroeck equations are combined with optical wave and coupled 
mode equations, allowing for wavelength dependent index and gain. Gain dispersion and 
spectral selectivity is shown to influence drastically the impacts of spatial hole burning in 
DFB lasers. 

Distributed feedback (DFB) lasers exhibit spectral properties, which are very usefull for 
applications in optical communication systems. A periodic longitudinal corrugation of the 
internal waveguide (as sketched in Fig.l) is the characteristic feature of these devices. It causes 
an optical feedback, which strongly depends on the light frequency w. Therefore, a correct 
modelling of such lasers should consider the spectral dependencies of the gain and other optical 
quantities. All 2D simulations of laser diodes reported until now (e.g., [1]) consider Fabry-Perot 
(FP) configurations only. 

In our paper, we shall describe a first 2D model for DFB lasers. Electrically, the transverse 
plane of the laser diode is described by the well known van Roosbroeck semiconductor device 
equations, which are solved numerically by our finite element simulation code TOSCA, extended 
to the case of heterodevices (cf. Fig.2). Since laser action principially requires degenaracy of 
carriers, Fermi statistics is adopted. 

The optical part of the model consists of two equations for the main component of the 
electric field (A is the corrugation period ) 

£{r, t) = [a(z)e-ifz + 6(z)e'l*] E(x, y) e ' w . (1) 

First, the transverse field shape is determined by the wave equation 

[ & + W + ( c n{u) + \9{U))2 ] Ev{X'v) = /W2^(*.V). (2) 

where v numbers the different transverse modes. The dependences of the refractive index n(u) 
and the material gain g(u) on the carrier densities n and p are modeled by 

n(oj) = nQ(u) + n' • (n + p-\ND - NA\), (3) 

9(u) = 9o-\j kJ, - / n - / P - { l - exp j£ 1} , (4) 

with fn,fp being the occupation numbers of electrons and holes, respectively, and Fn,Fp the 
corresponding quasi Fermi levels. In our examples, we use n' = — 10_2ocm3 , go = 2250cm -1 and 
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the formulae of Burkhardt [2] for the intrinsic refractive index n0(u>). The material gain g(u) is 
depicted in fig.3. It is treated perturbationally when solving the wave equation. Mathematically, 
(2) is an eigenvalue problem for an elliptic equation over a finite domain. The discretization is 
carried out by the same finite element approach as for the van Roosbroeck system, but different 
boundary conditions have to be imposed. The discretized eigenvalue problem is solved by inverse 
vector iteration. Fig.4 illustrates the dispersion of the two lowest {v = 0 and 1) Eigenvalues 

Second, the amplitudes a(z) and b(z) of the forward and backward travelling waves in (1) 
obey the so called coupled mode equations [3] 

i ^ = ( / 3 m - ^ ) a + K+& and - t £ = (f3m - ±)b + n~a. (5) 

The coupling coefficients K* depend on the concrete kind of corrugation and on the transverse 
field shape. For demonstration purposes, we shall treat them as independent parameters. Com
pleted by reflecting boundary conditions at the laser facets, these equations define another set of 
complex Eigenvalues /3m , called longitudinal modes. The dependence on K* of the seven modes 
closest to the Bragg value TT/A are shown in Fig.5 for the case of index-coupling. The real parts 
shift away from the Bragg value with increasing K. The imaginary parts, which represent the 
longitudinal losses, decrease and depend considerably on the mode number m. In the limit 
K - * 0 , they approach to the Fabry-Perot value, which is independent of m. 

The individual equations (2) and (5) are coupled with each other by physical conditions. 
Equating the real parts of both f3 yields the frequencies u k m of the complete laser modes. The 
modal gain represented by Im[f3v(ix>vm)) must not be larger than the modal losses Im[/3n] for any 
mode um. Furthermore, only those modes with equal gains and losses (threshold condition) 
can carry optical power P(w„m) > 0. They feed back to the electrical equations via their. 
contribution 

)|2, (6) 

to the stimulated recombination (appropriate normalization of E„ supposed). 
We use an effective three step method for solving the coupled set of equations. In a first 

step, the coupled van Roosbroeck and wave equations are solved selfconsistently in the x,y-
plane with treating not only the bias U, but also the frequency u and the optical Power P of 
the fundamental mode v = 0 as independent external parameters (the power in the mode v = 1 
is assumed to vanish). Result is a table containing the values of /3„ as functions of U,P and 
u. Secondly, another table with the (3m is obtained by solving the coupled mode equations (5). 
Combining both types of tables in the third step, we get all modal frequencies uum, the number 
/ of the lasing longitudinal mode and the power P(U>QI) carried by it from the equations 

Re[flv(<jjvm) - f3m] = 0 and max Im[Po(u0m) - f5m] = 0, (7) 
m 

where / realizes the maximum and P makes it zero. 
Using this model, we compare the roles of spatial hole burning in FP and DFB lasers. Hole 

burning in the lateral carrier distribution (Fig.7) decreases the gain of the v — 0 mode relative 
to that with v = 1 (Fig.4c). 

In a usual FP laser, where the losses Im(/3m) are independent of m, the maximum of the 
gain curve Im[(30(u)] is clamped at this value above threshold, as illustrated in Fig.6a. As can 
be seen, the corresponding gain curves of the v = 1 mode (dashed), are not clamped as well 
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Figure captions 

Fie . l Schematic view of the buried ridge DFB laser, which is considered in the numerical 
examples. Lateral symmetry allows to confine the simulation to one half of the device. 
Typical values for A = l.55fim have been assumed for the model parameters, which cannot 
be presented for briefity. 

Fig.2 The 2D shape of the conduction band edge in the high injection regime. 

Fig.3 Dependence of the gain in the active material on the wavelength A = 2TC/U> for different 
excess carrier densities. It vanishes for wavelengths above the gap-wavelength (As = 
1.55/um) and changes its sign at a "Fermi-wavelength", which corresponds to the difference 
fn - Fp of the quasi Fermi levels. 

Fig.4 Dispersion of the transverse mode eigenvalues /3„. U denotes the bias applied to the laser 
diode. The real part (a) depends only weekly on bias U and power P. The imaginary 
part (b) (gain of the mode) recovers qualitatively the shape of the material gain. The 
v = 1 gain is smaller then that for v = 0, due to smaller optical confinement. Optical 
power reduces the modal gains drastically (c) due to decreasing the carrier densities by 
stimulated recombination. Spatial hole burning (cf. Fig.7) decreases the v = 0 gain below 
that for v = 1. 

Fig.5 Dependence of some lowest eigenvalues f3m of the coupled mode equations on the coupling 
constant K (= K+ = K~, index coupling). R denotes the power reflectivities at both laser 
facets and L the laser length. 

Fig.6 Illustration of the different threshold and hole burning behaviours of FP (a) and DFB (b) 
lasers. (Length L = 200/zm and width W = 2jxm of the active zone in both cases.) Both 
the longitudinal and transverse modes are drawn in the complex /3-plane. The longitudinal 
modes (3m are discrete values (crosses), the transverse /3„ are contineous curves for every 
u (cf. Fig.4). The real parts of 0m lie very close (only every second one has been drawn 
in (a)!). The vertical distance from a cross to a transverse curve is the net gain, i.e., 
the difference between the gain of the transverse modes and the longitudinal losses. It is 
negative for all m at low bias and P = 0 (below threshold). The threshold is reached, 
when the maximum net gain approaches zero with still P = 0. With a FP laser this 
occurs (approximately) at the maximum of the transverse gain, with a DFB laser at the 
minimum of Im(/3m). With further increasing bias (above threshold), the net gain at 
these positions must not further increase, which is ensured by a finite optical power P 
in mode v — 0. The further slight increase of the net gain of mode v = 1 is due to the 
spatial hole burning. 

Fig.7 Lateral distribution of the optical intensities and the material gain in the active zone at 
a power of lOOmW in mode v = 0 at A = l.SOfim. The gain shows a clear hole at the 
center of the active region, it is larger at the position of the mode v — 1. 

Fig.8 Critical powers Pc for the laser onset of the mode v — 1 in dependence on the width W 
of the active zone for a FP-laser and three DFB-lasers. The labels at the curves indicate 
the Bragg period A in nm. 
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but continue rising. This is due to the transversal hole burning. At a critical power Pc, they 
reach the losses and start to lase, too. Above this point, they should be also clamped. This is 
not reflected in Fig.6, due to our assumption of vanishing power in the mode v = I, which is 
not valid above Pc. Nevertheless, Pc can be correctly estimated from below. It's dependence 
on the width W of the active zone is drawn in Fig. 8. 

In a DFB laser, the losses Im(j5m) have a deep and sharp minimum at Re(0m) w x/A 
(Fig.6b) and the gain of the lasing mode v = 0 is clamped at this position. Since the neigh
bouring Im(Pm) are much larger, the mode u — 1 may remain unlasing, although spatial hole 
burning increases its maximum gain above that of the fundamental mode. Therefore, the criti
cal power Pc now depends not only on W, but also on A and K. Few examples are presented in 
Fig.8. A systematic study will be published later. 
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