
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4
Edited by W. Fichtner, D. Aemmer - Zurich (Switzerland) September 12-14,1991 - Hartung-Gorre

Massively Parallel Computation for Three-Dimensional
Monte Carlo Semiconductor Device Simulation

Henry Sheng, Roberto Guenieri t
and Alberto Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720, U.S.A.

t Dipartimento di Elettronica e Informatica
Universita di Bologna, Italy

Abstract

This work presents a study of the applicability of a massively parallel computing paradigm
to Monte Carlo techniques for device simulation. A unique mapping of Monte Carlo to SIMD
fine-grained parallelism has been developed, decoupling the problem into separate compu­
tational domains. For MOSFET simulation, this novel mapping allows estimated speeds of
over 200,000 scatterings processed per second on a 65,536 processor Connection Machine,
nearly a factor of six over the fastest known to date.

1 Introduction

Throe-dimensional Monte Carlo simulation is desirable as device technology is pushed into
t h e deep submicron regime. However, its computational complexity is so high today that its
pi 'a.ctical use is out of the question. Attempts at coarse-grained parallelism and vectorization
h a v e been performed previously [l],[2],[3]. For the simulation of MOSFET's , speeds of 15,000-
3 0 , 0 0 0 scattering events processed per second on a single processor CRAY-XMP are reported
[l] . Though good for two-dimensional simulation, the computational speeds attained are not
sa t i s fac tory due to the complexity of three-dimensional Monte Carlo.

We propose the use of massive data-level parallelism to solve this problem. Specifically, we
p r e s e n t an approach, implemented on the Connection Machine1, that significantly improves the
C P U times required by three-dimensional Monte Carlo simulation on other architectures.

2 Computational Model

T h e Connection Machine [4] is a massively parallel SIMD computing system. The CM is based
a data directed computational model. In this model, the processing units and the memory are
a s soc i a t ed together in one unit, rather than as separate entities. Thus, the potential bandwidth
is increased significantly. A fully-configured system contains 65,536 processors. These processors
c a n be allocated into Virtual Processor sets, VP sets, where multiple "virtual" processors can

"•The Connection Machine is a registered trademark of Thinking Machines Corporation

L

286

VPR
1
4

32

Neighbor
0.52 ms

1.34 ms
11.76 ms

Gen.

3.17 ms
18.63 ms
70.99 ms

Gen., 2 VP sets
3.23 ms
18.75 ms
93.19 ms

Table 1: Communications time (32-bit integer) for different configurations, using 1024 proces­
sors: Near-neighbor, general, and general across VP sets. Randomized patterns arc used for
the general communications.

be mapped onto a single physical processor. This amounts to splitting the physical resources of
a single processor among k virtual processors, thus obtaining a k-fold increase of the number of
processors, (but each processor will be k times slower and memory will be reduced by a factor
of k). Also, multiple VP sets can be implemented, where each VP set can be composed of a
different number of virtual processors (the Virtual Processor Ratio, or VPR).

The CM communications architecture is configured in a hypcrcube network [10]. There are
two mechanisms of data routing in the Connection Machine: generalized and near-neighbor. In
generalized communications, the data is routed along the edges of the hypcrcube. For an n-
dimensional cube, no two points are more than distance n apart (for a full CM, ?i = 12). Conflicts
in routing arc resolved through the hardware router [4]. In near-neighbor communications, da ta
is transferred between neighbors. Since all processors communicate in the same direction, there
are no routing conflicts. Furthermore, the distance to the destination is minimum, not requiring
any intermediate routing of data. In Table 1, a comparison among different communication
relays is reported. Here, the overhead associated with communications across VP sets is small.

3 Description of the Simulator

Our simulator addresses the problem of static-field Monte Carlo. We have included the scatter­
ing mechanisms used in [l], while the electric field is provided by a 3D drift-diffusion simulator
running on the CM [5].

3.1 Algorithmic Mapping

In a parallel computing environment, the execution time stems from two sources: computa­
tional cost and communications cost. In a massively parallel paradigm, the latter cost becomes
significant, if not dominant. In fact, high data collision rates are produced from concurrent
communications if the messages are not to physical neighbors. It is apparent that an efficient
mapping, minimizing the communication complexity, is an important issue in finding an efficient
parallel algorithm.

The difficulty in mapping Monte Carlo to massive parallelism lies in the nature of its com­
putations. Unlike its drift-diffusion counterpart, the formulation of Monte Carlo inherently
suggests multiple disjoint data representations.

The problem of charge transport suggests a particle-based representation to resolve the
mechanics of flight for each simulated particle, where each particle is assigned to a processor.
However, the calculation of the electric field suggests a spatially- based representation, where
the device structure is physically discretized into a three-dimensional mesh structure, and each
grid point is assigned to a different processor. Choosing one of these representations to solve

287

o n e problem inherently forces the other one to be mapped in a very unnatural and inefficient
w a y .

We solved this problem by exploiting the flexible nature of the CM communication network,
T l i o problem is decoupled into two disjoint domains - one particle-based and one spatially-
b a s e d - allowing the use of the most natural configuration for each problem. Through the use
of multiple VP sets, the parallel architecture can be structured in multiple configurations. The
s imu la to r can then dynamically switch between these configurations.

In this approach, interprocessor communications is minimized. In the "particle domain",
e a c h particle is associated with a virtual processor. Since individual flight calculations are
i ndependen t of one another, there is no interprocessor communications. Here, the carrier flight
character is t ics are calculated. In the "spatial domain", the device is mapped onto a 3D grid,
w h e r e only near-neighbor communications are required. Here, the particle locations are tracked,
a n d the incident forces and the relevant Monte Carlo statistics are updated. Thus, the only
o v e r h e a d is in transferring data between domains, when the update of the incident field and
of t he statistical quantities is required. As presented earlier, the overhead of communications
b e t w e e n the two domains is small, since this amounts to communications between VP sets
(T a b l e 1).

3 . 2 C o m p u t a t i o n of t h e flight t i m e

T h e usual technique used to compute the flight time is based on an improved self-scattering
a p p r o a c h [7]. While easy to implement, this technique suffers the problem of finding a reasonable
defini t ion of the self-scattering term, which should be physically correct and at the same time
computa t ional ly efficient. In fact, an efficient definition of the self-scattering term requires a
g o o d knowledge of the highest energy reached by any particle at each location. However, since
t h i s is a result of the simulation, difficult trade-offs are required [l l] , [12]. An estimate of F, the
s c a t t e r i n g probability must be made. If this is too small, the flight must be repeated, increasing
r each time, until it is large enough. Overcstimation of T will result in excessively short flight
t i m e s , leading to computational inefficiency.

In our simulator we have implemented two different approaches. The standard self-scattering
a p p r o a c h has been implemented for sake of performance comparison with other existing codes.
T o guarantee the consistency of incident forces to the spatial position of the paxticlc, a fictitious
s ca t t e r i ng event occurs when the flight time is sufficiently long as to allow a particle flight to
p r o c e e d into the domain of another grid point. An alternative approach under investigation
is t h e numerical solution of integral equation defining the flight time, avoiding the difficulties
assoc ia ted with self-scattering.

4 Computational Results

T h e Monte Carlo simulator has been implemented on a 1024 processor CM2 and its performances
h a v e been evaluated. From Figure 1, it is seen that the communications overhead scales with
t h e number of VP's . This is because of the increase in collisions when routing data. The time-
mul t ip lexing of processors should reflect a linear tradeoff of VP's with iteration time (verified
empir ical ly in Figure 1). This can be modeled by;

Totaltime = m • VPR + b (1)

288

Intcrprocessor Communications Overhead

5.00 10.00

VPR

Figure 1: Total time and communications time per scattering iteration

where b is a constant having a value which can be determined fitting the experimental curves
for a specific task. From this, the total scatterings per second is:

Scatterings _ (VPR) • (physical-processors)

second ~ m • (VPR) + b (^

For m • (VPR) < b, the scatterings per second is approximately linear with the VPR; while
for m • (VPR) > b, the scatterings per second becomes constant regardless of the VPR, This
behavior is empirically seen in figure 2.

Theoretical calculations for maximum scattering processing rate for 512 and 1024 processors
yielded 3048 and 5500 scatterings per second, correlating well with the empirical observations.
It is seen that doubling of the number of processors does not double the speed. This is due
to the increase in routing congestion (in communicating between domains) commensurate with
the increased number of particles.

It is clear that a significant cost comes from the communications overhead. In some cases,
this can be as high as 60% of the total cost. This is mainly due to the collisions incurred in the
routing of data, particularly severe at the beginning of the simulation, when all the particles
are in the vicinity of the ohmic contacts. However, as the simulation progresses, the particles
spread out in the device, leading to faster routing. This behavior can be empirically observed
(c.f. Figure 3). Within only a short amount of time, the communications cost decreased by
20-25%. Processing rates of 5,392 scatterings/second were achieved with a Connection Machine
with 1024 processors. Using the theoretical model developed, talcing into account the increase in
routing traffic, a full Connection Machine with 65,536 processors will exhibit computation rates
of over 200,000 scatterings/sec. Computational experiments are now under way to measure this
rate on a full Connection Machine.

289

VPR vs. Scattcrings/Scc.

l024Pioccssor.H

Figure 2: Scattering processing ra.te on the CM

CM routing lime vs. simulation maturity

20.00 -10.00 60.00 80.00

Ilcmiom

100.00 120.00

Figure 3: The cost of communications decreases as the simulation progresses.

290

5 Conclusions

A three-dimensional static-field Monte Carlo simulator has been developed to study the suit­
ability of massive fine-grained parallelism for charge transport calculations. By exploiting the
architectural flexibility of the CM, efficient mappings were constructed for each problem of rel­
evance, allowing an estimate of a six-fold increase over scattering processing rates known to
date.

An alternative approach for flight time computation, currently under investigation, is based
on the numerical solution of the integral equation defining the flight time. This computation
requires an additional evaluation of the scattering probability, but avoids the problem of the
definition of the self-scattering factor. This approach is appealing on the CM since the additional
computation is completely parallel.

References

[I] F. Vcnturi, ct. al. IEEE Transactions on Computer-Aided Design, April, 1989.

[2] W. It. Martin and F. B. Brown. The International Journal of Supercomputer Applications,
Volume 1, Number 2.

[3] D. Cheng, et. al. IEEE Transactions on Computer-Aided Design, September, 1988.

[4] D. Hillis. The Connection Machine, MIT Press, Cambridge, MA, 1985.

[5] D. Webber, E. Tomacruz, R. Gucrrieri, T. Toya.bc, A. Sangiovanni-Vinccntelli, Proc. of
NUPAD 1990.

[6] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan -
Kaufmann, 1990.

[7] C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation.
Springer-Verlag, 1989.

[8] D. Douglas, et. al. The Architecture of the CM-2 Data Processor, Thinking Machines Cor­
poration Technical Report HA88-1.

[9] D. Hillis and G. Steele. Communications of the ACM, December, 1986.

[10] C. Stanfill. Communications Architecture in the Connection Machine System, Thinking
Machines Corporation Technical Report HA87-3.

[II] E. Sangiorgi, B. Ricco, and F. Venturi, IEEE Transactions on Computer-Aided Design,
February, 1988.

[12] C. Moglestue, IEEE Transactions on Computer-Aided Design, April, 1986.

