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Abstrac t 

The paper presents a new and computationally simple model for the currents through 
metal-semiconductor contacts including both thermionic emission and tunneling effects. The 
model allows the simulation of devices with non-ideal contacts where commonly used bound­
ary conditions are not applicable. 

1 Introduction 

B o t h low resistance (ohmic) and rectifying (Schottky) contacts are essential parts of many 
semiconductor devices. Accordingly, models for ohmic as well as Schottky contacts have been 
established in many device simulation programs. These models are introduced as boundary 
conditions for the numerical solution of the semiconductor transport equations. The usual 
Schot tky contact model is derived from a given barrier height and a thermionic emission current 
across the Schottky barrier, while the conventional model for ohmic contacts simply states charge 
neut ra l i ty and vanishing voltage drop at the contact boundary [1]. Some simulators allow the 
inclusion of an additional but constant specific contact resistance. 

A comprehensive overview on metal-semiconductor contacts is given in [2]. The fundamental 
s t a t emen t is that Schottky contacts are present at high barrier heights and low doping concen­
t r a t i ons , while contacts with a low barrier or high doping exhibit ohmic behavior. This means 
t h a t the common Schottky contact model looses its validity with increasing doping density, 
because additional tunneling currents come into play which are not covered by the model. The 
u s u a l ohmic contact model on the other hand is not valid at lower doping, if depletion regions 
a r e present near the contact, or if the bias dependence of the contact resistance is of impor­
t a n c e . If the doping varies over many decades under the contact (as is the case in certain power 
diodes) , the contact behavior changes from ohmic to Schottky [3], and none of both models can 
b e used for the simulation. Thus the need for a contact model arises which bridges the gap and 
includes thermionic emission (dominant in Schottky contacts) as well as tunneling (dominant 
i n ohmic contacts) and is thus valid over the whole range of interesting doping concentrations. 
Tradi t ional models of tunneling at metal-semiconductor contacts [2, 4, 5, 6] either do not fully 
cover all necessary modes of operation or require cost intensive numerical integrations, which 
m a k e s them far too expensive for device simulation purposes. For device simulation a simple, 
explicit formula is needed which comprises the essential physical effects but is easy to evaluate. 

In the paper, a new analytical model for the contact current and the specific contact re­
sis tance is derived by introduction of novel approximations for the quantum-mechanical trans­
miss ion probability and the Fermi distribution. An equivalent recombination velocity can be 
derived as well. 
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2 Derivation of the contact boundary condition 

Boundary conditions for the semiconductor transport equations should be consistently based on 
general interface conditions for the electron distribution function at hetero interfaces by evalua­
tion of corresponding integrations (moments of the interface condition) with respect to &-space 
[7, 8]. In order to carry out the moment integrations, assumptions on the form of the distribu­
tion function have to be made. In the literature concerned with metal-semiconductor contacts, 
it is common practice to assume a semiconductor electron distribution that is composed of 
two halves of the equilibrium distribution having the metal or the semiconductor quasi-Fermi 
energies for the incoming or outgoing velocities, respectively [2, 4, 5, 6, 9]. This interface dis­
tribution is then connected to the bulk distribution (shifted Maxwellian or similar) by equating 
the current transported by each distribution and keeping the semiconductor quasi-Fermi energy. 
Although this procedure is questionable (details will be discussed elsewhere), it is used here too 
in order to obtain an analytical approximation for an accepted model. 

Under the assumptions stated above, the first order moment of the boundary condition 
reduces to the following expression for the current density through the contact: 

a h f°° t°° t°° r - 1 
Jn = - ^ — dkxkxT(kx) / dkydkz \fM(k)- fs(k)\. (1) 

47T3 mn Jo J-oo J-oo L J 

T(kx) is the transmission probability, while fj^ and /<, are the metal and semiconductor equi­
librium distributions, respectively. Because of a possible degeneration of the semiconductor in 
ohmic contacts, Fermi-Dirac distributions must be used. A parabolic band structure with an 
effective mass mn of appropriate orientation to the crystallographic axes [5] has been assumed. 
Eq. (1) is identical to the formula in [9] after transforming the integration variables to fc-space. 

In the following, approximations are introduced for both the tunneling probability and the 
Fermi distribution in order to enable an analytical evaluation of (1). 

2 .1 T r a n s m i s s i o n p r o b a b i l i t y 

The contact model is based on a tunneling transmission probability which has been given by 
Crowell and Rideout in [5]. 

The energy band model of the contact under consideration is depicted in fig. 1. The metal-
semiconductor interface is located at x = 0, with the metal at x < 0 and the semiconductor at 
x > 0. The barrier height is 0 B , while WQ is the top energy of the barrier. The Fermi level is 
indicated by the dashed line. At the interface, the Fermi level is discontinuous, thus accounting 
for a voltage drop Vc across the contact. 

The semiconductor conduction band edge according to [5] is assumed to be parabolic: 

q2ND , 
Wc(x) = W0 + qEmax x + ± ^ - x\ (2) 

where Emax is the maximum electric field at the contact, and qNo is the effective space charge 
responsible for the band bending in the z-direction. In one dimension, NQ is the donor doping 
concentration. Assumption (2) is discussed in [4, 5, 10]. Image force effects are accounted for 
by a respective lowering of ()>B [2, 11]. The diffusion potential VQ in fig. 1 is defined by the 
maximum electric field at the interface: 

,Vo = '•§?. (3) 
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Figure 1: Energy band model of the contact 

The quantum-mechanical transmission probability for an electron with energy W < WQ in 
t h e WKB approximation has been computed by Crowell and Hideout for the band model of 
fig. 1 to give [5]: 

nW) = ex?(-I0^[V-c- (l-^ArtanhV-c)), 

where 

a n d 

W00=^ 
qh J ND 

m"e3 

c = 
2ND 

{W0 - W) 

(4) 

(5) 

(6) 

have been introduced as abbreviations. For energies W > W0, a transmission probability of 
uni ty is assumed, leading to classical thermionic emission [2]. It is assumed that the tunneling 
effective mass m* is not a function of energy [5]. Crowell and Rideout investigated the contact 
current using (4) in a numerical integration of (1). 

For device simulation purposes, the transmission probability has to be simplified to arrive 
a t an analytically integrable expression. It is easily verified that (4) can be reasonably well 
approximated by 

Th i s new approximation will be used subsequently for an analytical evaluation of the tunneling 
current expression. 

2 - 2 Fermi-Dirac distribution 

Insertion of the transmission probability into (1) yields the current density across the barrier. 
Using the exact definition of the Fermi distribution, a closed solution of the integral is not 
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known. In order to arrive at an analytically tractable integral, a new approximation of the 
Fermi distribution is introduced: 

l e - 3 x / 2 
for x < 0 

for x > 0 (8) 

This expression approximates the original function quite well since it preserves the main features 
(symmetry, asymptotic behavior, value and slope at x = 0) while having a small overall error. 

2 .3 T h e c o n t a c t c u r r e n t 

In a first approximation, only the leading terms in (8) are kept. Comparison with the results of 
the exact formula shows that the additional terms in general have a negligible effect. Evaluation 
of the term involving fa in (1) for energies below Wo using (7) and (8) yields the tunneling current 
of electrons going from semiconductor to metal 

qmnkT 1 r——— 
2 2^3 2 v*WbogVb exp 

<I>B 
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2kT 

-qVc W00qVD\ 
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Woo) 
(4>B ~ qVc < qVD). (10) 

The corresponding result for the current Ju of electrons tunneling from metal to semiconductor 
is identical to (9-10) with <J>B - qVc replaced by <J>B- The total contact current is then obtained 
by Jn = J3 - Jyi + JTE, where JJE represents the classical thermionic emission part [2] of the 
current. It should be noted that the model includes the temperature dependence of the contact 
current. 

3 Results of the model 

Exemplary results for contacts on n-Si at T = 30QK are presented in figures 2-4. 

3 .1 I - V c h a r a c t e r i s t i c s 

The relation of the current density to the voltage drop Vc for an Al-Si contact with a barrier 
height of 0.7 V is displayed in figures 2 and 3 on a logarithmic as well as a linear scale. Note the 
rectifying behavior at lower doping and the transition to nearly symmetric (ohmic) curves at 
increased doping concentrations. On the scale of fig. 3, the contact with a doping of 10 2 0 crn - 3 

appears as an ideal contact of zero voltage drop. 
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Figure 2: Contact current density versus contact voltage (logarithmic). 
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Figure 3: Contact current density versus contact voltage (linear). 
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3.2 Specific contact resistance 

The specific contact resistance pc is derived from Jn by [12] 

1 = dJn 

Pc dVc Vc=0 
(11) 

A bias dependent contact resistance can be introduced by definition of a secant contact resistance 
rather than a tangential one as in (11). 

iu , 
u u 
2 O 
CC _J 
t - — (/) 
H -
en OJ 

PWIO - O. 

PWIO - o. 

pwia - o. 

A 

NB-SX 

• 
P.L-SI 

a 
PT-SI 

38 

70 

as 

11. O 12, O 1 3 , 0 1*. 0 IS. O IS. O 1 7 . 0 10. O 19. O 20. O 21 , O 22. O 

D O P I N G 

CCM*»-3 ) (LOG. ) 

Figure 4: Specific contact resistance versus doping concentration (T = 3005!"). 

Fig. 4 shows the specific contact resistance according to (11) for selected contact materials 
as a function of doping concentration together with respective experimental data. Experimental 
data and barrier heights of 0.58 eV, 0.7 eV, and 0.85 eV for Nb-Si, Al-Si, and Pt-Si have been 
taken from [13], [12], and [11], respectively. Although no parameter adjustment has been made, 
the agreement is quite reasonable. Note the drastic decrease of the resistance due to the onset 
of tunneling as the doping increases above 1 0 , 8 c m - 3 . 

3 . 3 R e c o m b i n a t i o n v e l o c i t y 

The contact current can be equivalently expressed in terms of the recombination velocity by 
division of the current components by certain electron concentrations [2]. With pure thermionic 
emission, the concentration at the top of the barrier and a related equilibrium concentration is 
commonly used. This concept can be generalized to include the case of tunneling. The most 
consistent way is to take the electron concentration at a distance of the order of the tunneling 
length from the interface. Since the derivation of the tunneling length goes beyond the scope 
of the present paper, these results will be presented elsewhere. 
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4 Conclusion 

A contact model has been presented that is valid for nondegenerate and degenerate semicon­
d u c t o r as well as forward and reverse bias. It is easy to evaluate (even on a pocket calculator) 
a n d thus suited for quick estimations, optimization loops, or for implementation in a device 
s imula t ion program as a new boundary condition for the electron continuity equation. The ca­
p a b i l i t y of the model to include doping, bias, and temperature dependence of contact current, 
c o n t a c t resistance, or recombination velocity into device simulations has been illustrated. 

The author likes to thank J. Nylander for stimulating discussions and A. Bergemann and S. 
Zschiegner for carrying out the numerical calculations and the artwork. 
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