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Abs t rac t 
Our recently developed model for oxygen precipitation is applied to multi-step thermal 

anneals including a CMOS-type cycle. The model is in good agreement with experimental 
results. Alternatives for a redesign of the CMOS-process are investigated. Precipitates 
forming during crystal growth in the temperature range from 1000°C to 700°C as well as 
during temperature ramping are shown to influence results significantly. We also present a 
generalized kinetic concept for modelling coupled diffusion-precipitation phenomena, which 
contains our previous precipitation model as special case. 

Controlling the formation of S i 0 2 - t y p e agglomerates of oxygen and silicon (oxygen precipitates) 
inside CZ-wafers during thermal anneals is important for obtaining a high yield in manufacturing 
VLSI/ULSI devices. Oxygen precipitation inside the bulk is utilized for the removal of harmful 
meta l impurities from device active regions ("internal get ter ing") . Designing the gettering 
behaviour during complicated annealing cycles requires a detailed knowledge of size and number 
of the oxygen precipitates inside the wafer. 

The purpose of this work is to calculate number and size of precipitates in the bulk of the 
wafer, during multi-step annealing cycles like those in CMOS technology. Most of the currently 
used computer models for precipitation phenomena cannot be used for this task. Simple "clus­
tering models" developed for arsenic precipitation (e.g.[l]) use the unjustified assumption, that 
all precipitates have equal size which is constant with t ime. Models based on Ham's theory 
of diffusion [2],[3] assume a constant number of precipitates which is used as a free parameter . 
Monte Carlo models as reported by Hawkins [5] require considerable computational resources 
and to our knowledge have not been applied to multi-step thermal processes so far. Models 
based on Fokker-Planck equations provide an efficient means for calculating the concentration 
of precipitates as a function of precipitate size and t ime, which yields all necessary data ( total 
concentration of precipitated oxygen, average concentration and size of oxygen precipitates) 
[6]. Nevertheless the Fokker-Planck equations, which are based on a Taylor series expansion 
of a corresponding set of ra te equations, fail at describing the smallest precipitates containing 
only a few atoms [4]. Therefore we have recently developed a computer model [8] for oxygen 
precipitation, which allows an adequate description of all precipitate sizes at manageable com­
puta t ion times, by combining rate equations for small precipitate sizes with a Fokker-Planck 
equation for all larger ones. The kinetic model equations are a special case of a generalized ki­
netic concept, which allows the systematic derivation of kinetic equations for arbitrary coupled 
diffusion-precipitation phenomena. The kinetic concept is outlined in the following section. 
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1 Generalized kinetic models for coupled diffusion-precipitation 
phenomena 

1.1 General set of precipitation equations 

As the host medium a crystalline solid is assumed. We define a "precipitate" as any particle or 
compound of particles that differs in its composition from the ideal crystal lattice. This means 
e.g. in the case of oxygen in silicon, that even a single vacancy, a single silicon selfinterstitial, 
or a single oxygen atom is a precipitate just as well as an extended defect like a dislocation, a 
stacking-fault, or an oxygen-silicon agglomerate composed of millions of atoms. In the following 
this definition will allow a unified theoretical description of precipitate formation starting from 
single particles and leading to extended defects. The fundamental qualities of a precipitate are 
its "type" and the "position" of its center of mass with respect to a coordinate system fixed 
in the crystal lattice. The type cr of a precipitate is completely determined by the number 
of particles n̂  of the species Ti (i=l,2...s) and by the position of the individual particles with 
respect to the center of mass. 

cr = (n,an) = (ni ,n2,n 3 , ...ne;an) (1) 

The integer number a„ accounts for all different geometric configurations, which cannot be 
transformed into each other by a change of the coordinate system. Its maximum possible value 
is called An. We assume that there is a volume d3x (with the coordinates x = (xlt x2, x3) of 
its center), in which the concentration of those precipitates, which can move in the lattice, is 
approximately constant with space. On the other hand d3x shall be large compared to sizes 
of the mobile precipitates. The concentration of precipitates of type cr inside the volume d3x 
can change with time either by precipitate motion ("diffusion") into or out of d3x or by a 
transition of its type from cr to \i or vice versa ("precipi ta t ion") 

cr = (n; an) -> \i, = (m; am) - (n + k; an+k) (2) 

with n and m = n + k being abbreviations for the "composition" of the precipitates with the 
type a OT fj, 

n = (ni, . . . rii,... n,) m ~ (mi, . . . m^,... m„) = n + fc = (na + * i , . . . n{ + fc;,... n, + ke) (3) 

Any changes k{ of the particle numbers n,- at the transition (3) must not result in negative 
particle numbers (n^ + fcj > 0). The variation with time (t) of the concentration fa(x,t) of the 
precipitates with type a in d3x is determined by the continuity equation 

^M^l = -Vl + £ (/„«,„_„ - Uw^) + Q. (4) 

The first term - V / ^ ; ? , t) on the right hand side of equation (4) accounts for the increase of fa 

due to diffusion into the volume d3x, while the second and the third term yield the number of 
precipitates a generated or lost by transitions from or to other precipitate types. The transition 
rates from \i to <r and from cr to /x are denoted by ty;J_Hr(x, t) and ti?(r_>M(x,t). If cr and fi are 
equal w0-_(r = 0 is demanded. For the net number of transitions from a to fi we introduce a 
"precipitation flux" 

/ ^ - ^ ( i ? , * ) = f^W^a - f<rW<r-*v (5) 
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which will be useful for simplifying the notation in the sections below. The sum ]T}„ in 
equation(4) as well as the sum YLa a r e short forms of 

E = E E - E E E= E E - E E (*) 
i* m1=0m2=0 m,=Oom = l <r n1=0n3=0 n,=Oo„=l 

Ni (1 < i < s) is the maximum number of particles of the species Tj that a precipitate can 
contain and Am (An) denotes the maximum number of geometric configurations possible for 
a particle with composition m (n). The additional term Q^x^t) in equation (4) guarantees 
"conserva t ion of particles" at the "pure" precipitation process 

0 = E * • (^r1) = E * • ( E (/>,~ - uw.-.*) + Q.) (7) 
<r V / prec cr \ fi ) 

for each species T; and (i = 1,... s). The conservation of particles holds only in case T; is 
an impurity atom. If T{ is an interstitial matrix atom, or a vacancy the Prenkel pair genera­
tion/recombination mechanism has to be considered in Qa too. In physical terms Qa accounts 
for a change in fa if precipitates of the (mobile) type a are consumed or generated during a 
transition of another precipitate from a to jl. 

Equations (4) and (7) describe the general case of coupled diffusion-precipitation phenomena. 
They serve as master equations for systematically deriving simplified kinetic equations. The 
simplification is always achieved by specifying the number s of the precipitating species, the 
permitted changes ki of the particle number n; at any transition of precipitate type and the 
types cr of those precipitates, which are mobile (diffuse) in the host crystal. We have derived 
a number of special cases in this way including e.g. a model with two precipitating species, 
that may be applied to the formation of precipitates of oxygen and carbon with changing 
stochiometric composition. For brevity we can only demonstrate the method for the case of one 
precipitating species in this paper. 

1,2 One precipitat ing spec ies , change of particle number ± 1 

There shall be only one precipitating species (s = 1), and we assume that there is only one 
geometric configuration for any precipitate composition n (An = 1), which means that the 
numbers "an,am" in equations (1)- (7) can be omitted. The notation is simplified by setting 
n — ni and N = N\. It is assumed, that the particle number n = ni can only change by Jfci = ±1 
at any single transition, and that only single particles diffuse. Therefore the precipitate types 
cr and n reduce to a = (nx) = (n), fi = (mi) = ( n i l ) . Additionally, J ^ = 0 and Q^ = 0 for 
n / 1 follows. This is due to the restriction, that only precipitates consisting of one particle can 
diffuse. Therefore the precipitates "(1)" are the only ones that can be generated or consumed 
at a transition of other precipitate types. 

By introducing the above conditions into equations (4) and (7) and by using the definition 
of the precipitation flux (5) we obtain 

dfii)(x,t) 
ft = -V^'(D - J(i)-W + G(U (n = 1) (8) 

df/n\(x,t) 
QI = /(n-l)-.(n) - /(n)-(n+l) (n = 2, 3, ...N) (9) 

N 

Q(l) = - E ;("-lh(") 7(n-l)-(n) = /(i.-l)f(n-l)-(„) " /(»)«(„)_(„-!) (10) 
n=2 
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In deriving equation (8) it has to be considered, that no particles are generated or annihilated 
(u>(o)_(i) = u>(i)_»(o) = 0). Additionally, we consider 7^jv)-»(i\r+i) = 0 for n = jV in equation 
(10), since the maximum N of the number n of particles of the species T\ cannot be exceeded 
(U>(JV)_(JV+I) = w(N+i)->(N) = 0). This model has been proposed earlier [7] and will be the basis 
for describing the precipitation kinetics of oxygen in silicon later. Another potential application 
may be modelling the formation of precipitates of other dopants like Sb,... or metals. 

1.3 Kinet ic rate equat ions in combinat ion w i th a Fokker-Planck equat ion 

Usually both small precipitates consisting of a few atoms and very large precipitates with 
millions of atoms can form during thermal anneals. Even in the simple case of section 1.2 this 
leads to millions of coupled kinetic rate equations like equations (9), which cannot be solved 
at manageable computation times. Therefore the sets of kinetic rate equations (equations (4)) 
are usually expanded ("Kramers-Moyal expansion" [10]) into a Taylor series with respect to the 
changes ib; in the particle numbers n{ , which are assumed quasi-continous. Termination of the 
series after second order terms yields a single "Fokker-Planck" equation approximating the whole 
set of rate equations. In case of the equations (9) in section 1.2 the Kramers-Moyal expansion 
and some straightforward manipulations lead to the following Fokker-Planck equation: 

df(n;x,t) _ dl(n;x,t) 

dt dn 

I(n;x,t) = ~B-^ + Af (11) 

with the coefficients A,B depending on the transition rates tf(n)_>(„_i), w^_^n+1^ 

dB 
A(n;x,t) = - — + «;(„)_•(„+!)-tu(„)_»(n-i) (12) 

B(n;x,t) = - • («;(„)_(„+!) + tW(n)-(„_i)) (13) 

Similar to equation (9) f(n; x,t) denotes the concentration of precipitates of type "(n)" (...con­
taining n particles of the species Ti), Nevertheless we write f(n;x,t) instead of f^(x,t) 
indicating that the domain for n has been extended to non-negative real values. The disad­
vantage of the Fokker-Planck equation is that it provides a bad approximation for the smallest 
precipitate sizes containing only a few atoms. Recently [7], [8] we have therefore suggested a 
combined system of rate equations for small precipitate sizes and a Fokker-Planck equation for 
all larger ones linked by appropriate boundary conditions. In case of one precipitating species 
and a permitted change of the particle number of ±1 such a combined system consists of equa­
tions (8)-(9) for n = 1 up to a user specified index n - nQ and the Fokker-Planck equation 
(11) for n0 + 1 < n < N. The rate equation (9) for n = n0 and the Fokker-Planck equation are 
linked by a boundary condition for the precipitation flux 

I(n0+l;X,t) = /(no)«0(no)-(iio+l) - / ( n 0 + l ; * . O w ( n o + l M n o ) = J(no)->(n0+l) ( 1 4 ) 

Finally, it has to be considered, that in the term Q(i) m equation (10) for n > n0 + 1 the 
following substitutions have to be made 

n e M) - n G 11+ f(n)(x,t) -> f(n; x,t) £ -» / (15) 
n=n0 + l • /"=«0+l 
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with A/o being the set of non-negative integers and TZQ denoting the set of non-negative real 
numbers. (8)-(10) and (11)-(15) are the set of combined kinetic equations obtained earlier[7]. 

In order to apply the sets of kinetic equations derived from (4) and (7) to real physical 
systems, the diffusion fluxe(s) j a and transition rates wfi^.a.,wli-t<7 have to be modelled. An 
expression for j a can be obtained by considering the jumps of mobile precipitates from one 
lattice site to another. Since it is known from literature [10] that transitions of precipitate sizes 
and jumps in a crystal lattice are a mathematically identical problem, it is clear that jumps in 
the crystal lattice are described by a term identical to the second term in equation (4). This 
t ime a = (2/1)2/2,2/3) and fi = (z1>z2,z3) denote positions in the crystal lattice. The transition 
rates tv are interpreted as jump rates to neighbouring positions. Performing a Kramers Moyal 
expansion leads to a Fokker-Planck equation now called diffusion equation, the coefficients of 
which depend on the jump rates. They are mathematically identical to the equations derived 
for precipitation. In this way modelling diffusion or precipitation is referred to modelling jump 
rates or transition rates. In the simple case of equal and constant jump rates, this leads to 
Fick's law of diffusion for j a . More refined models for jump rates have recently been used [9] 
to derive equations for diffusion under influence of mechanical stress. 

2 Transition rates for oxygen precipitation in silicon 

Oxygen precipitation in silicon is described by the combined set of kinetic equations (8)-(10) and 
(11)-(15)- All coefficients in the equations are determined by the transition rates W(n)_(n+i) 
(growth) and W(n)-f(n-i) (dissolution) of an oxygen precipitate containing n oxygen atoms, 
which are modelled by [8] 

w(„)_(„+i) = h-C%J, «;(„)_(„_!) = h • ClJ0 (16) 

Expressions for the concentration Cl
0 of oxygen atoms at the interface between precipitate 

and matrix and for its equilibrium value CQ0 can be derived as shown earlier [8]. For h the 
expression [8] 

A = 4*r»*.„«p^ y ^ j , »=^-3 (17) 

based on the assumption of spherical precipitates with radius r is used, r is related to the 
number of O-atoms as shown in the right equation in (17). v0 « ^jp*- is the volume per oxygen 
atom in the precipitate with stochiometric composition Si02 . The thickness 6 of the interface 
between precipitate and matrix in equation (17) is roughly equal to the distance between two Si 
atoms in the lattice (0.235 nm). v denotes the frequency of attempts v = Do/82 (Do denotes 
the diffusion coefficient of oxygen) of the O-atoms to surmount the energy barrier 

A G n _ n + 1 = &G(n + l,t)-AG(n,t) + AGactivation (18) 

for incorporation into the precipitate. This requires an activation energy of AGactivati<m ~ 
0.25eV[ll]. The Gibbs energy AG(n,t) of a precipitate containing n O-atoms, is modelled as 
the sum of volume energy AGo and the interfacial energy AG'-^ 

AGo = - n f c T l n f ^ j , AGif = Anr2 • a • (l + (£)') (19) 
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The average concentration of oxygen atoms Co residing in interstitials sites in the silicon bulk 
is equal to the solution / ^ of equation (8) and CQ

q is lts v a m e m c a s e °f thermodynamical 
equilibrium. The interfacial energy AG** contains a constant parameter a = 0.31J/m2 [12] 
In difference to earlier work [8] a correction factor for the interfacial energy of small precipi­
tates containing a free parameter £ [13] is introduced. Point defects and precipitate stress are 
not considered, whixrh is also contrary to earlier [8] work. This shall reduce the number of 
free parameters and1 allow the fitting of a large number of experimental data at manageable 
computations times. 

3 Simulation Results 

Only calculations for oxygen precipitation in the bulk of a silicon wafer are performed. Using 
Z0MBIE[14] we solve the combined kinetic equations (8)-(10) and (11)-(14) numerically, which 
yields the size distribution function f(n, t) = f(n; t) as a function of the number of O-atoms in 
the precipitate and the annealing time. The dependence on the location x and the diffusion term 
—Vj(!) are neglected, since the oxygen concentration in the bulk is approximately homogenous. 
Loss of bulk oxygen due to outdiffusion is a minor effect in all processes studied. Therefore it 
is only accounted for by error functions [7]. Experimentally observable quantities like the loss 
of interstitial oxygen Co.ioss due to the formation of precipitates containing 2 or more O-atoms, 
the total concentration Cop and the average precipitate radius f of those oxygen precipitates 
(OP) containing more than nres particles, are evaluated according to 

N N yN . 

Co.10. = S>/<»>. C 0 P = E fin), f=^T" / ( n ) (20) 
n = 2 n=nTC, Z*m=nTe, J(TI) 

and by considering equation (15). The number nres is chosen as 0.5-106, which roughly cor­
responds to the resolution limit for precipitate sizes in the experimental determination of the 
concentration of precipitates by etch pit counting. As far as possible we have tried to take into 
account all thermal influences a sample has been exposed to. This includes temperature ramps 
before and after annealing as well as an estimate for the cooling time tcooung from 1400°C to 
450°C during crystal growth. Simulation parameters have been determined using the optimiza­
tion driver "PROFILE"[15] to match experimental [16] and calculated data of two-step anneals 
shown in Figs.1,2. The values obtained are C, = 0.22, the coefficients CQ9

0 = 2.2 • 1021cm~3 and 
Eo — 1.056 V in the bulk equilibrium concentration of interstitial oxygen 

Cg» = C0% • exp ( ^ ) (21) 

and an estimate of tcooUng = 3/i for the cooling time during crystal growth. (Only ( = 0.22 
was universal in all simulations we performed). Comparing our model to the experimental 
results shown in Fig.3 and a number of other results not shown here the values of Co

q
0 = 

2.0 • 1021cm~3 and Eo = 1.03eV as observed experimentally by Craven [19] were found more 
accurate. Additionally a value of tcooung = lO/i was used instead of tcooung = 3h, The difference 
in parameter values is not surprising, since different samples may have different levels of point 
defect supersaturation and different levels of contamination with other impurities than oxygen 
(e.g. carbon), which cannot be considered in the model used here. Additionally the value of 
tcooling may be blurred by additional thermal pretreatments in the experiment which we did not 
know of. 
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In the following the model with parameters as in Fig,3 is used for estimating oxygen pre­
cipitation in a CMOS-type annealing cycle ("p3" in Tables lab). The simulation results for 
precipitated oxygen, the density and the average radius of the precipitates for the full cycle 
"p3" as well as its first ("pi") and second stage ("p2") are shown in Figs.4,5 and 6. The lines 
labeled with "p4" and "p5" will be discussed later. In Fig.4 experimental results for the loss 
of interstitial oxygen after "pl","p2" and the final CMOS-cycle "p3" are shown too. It can be 
seen that the experimental results are predicted quite well in most cases. 

As mentioned before the formation of oxygen precipitates during cooling in CZ-crystal 
growth is accounted for by assuming an exponential decrease of temperature from 1400°C to 
450°C in about lOh ("col"). The subprocess 1 ("spl") is intended for dissolving preexisting 
precipitates, especially those formed during crystal growth. Nevertheless it can be seen that the 
1200°C steps contained in pi (full lines in Figs.4,5,6) already lead to a significant amount of 
oxygen precipitation. For initial oxygen concentrations above 8.0 • 101 8cm - 3 almost all precipi­
tates have already formed during the first stage "pi" of "p3"(Fig.5), while for the lower oxygen 
concentrations the majority of the precipitates have formed after the second stage "p2" due 
to the "sp3" (Table lab). The final steps ("sp4") leading from "p2" to "p3" in Figs.4,5,6 do 
not lead to any additional significant formation or growth of precipitates and can therefore be 
omitted. Nevertheless the calculated size distribution functions for "p2" and "p3" (Fig.7) used 
to evaluate the results in Figs.4,5,6 differ by an additional precipitation peak (C) as shown in 
Fig.7. The steps in Fig.7 show the calculation results for the 5 rate equations used in combina­
tion with a Fokker-Planck equation (continuous lines). The size distribution function for "pi" 
shows one precipitation peak (A) being characteristic for the (1200°C) steps, while "p2" shows 
an additional one for the 1000°C anneal in "sp3" and "p3" a third one (C) for the 950°C step 
in "sp4". 

The cooling rate in crystal growth is an important parameter for the amount of precipita­
tion observed. This is demonstrated by reducing the cooling rate ("co2" instead of "col" (Table 
lab)) leading from "p3" to "p4" in Figs.4,5,6. Enhanced precipitate formation and growth in 
the CMOS-type cycle is observed (compare "p4" to "p3" in Figs.4,5,6). From the calculated 
size-distribution functions plotted in Fig.8, it can be seen that precipitates formed during cool­
ing in crystal growth are generated predominantly in the temperature range from 1000°C to 
700°C. The high temperature cycle "spl" was intended to dissolve these precipitates and make 
the results after the CMOS-cycle less sensitive to thermal conditions in crystal growth. The 
effectiveness of "spl" can be improved using a steeper temperature ramp and inserting the 
wafers into the furnace at 1000°C instead of 850°C ("sp5" in Table lab). This allows less of 
the preexisting precipitates ("col" in Fig.9) to grow on during the ramp up to 1200°C (dashed 
and dotted line in Fig.9) and leads to retardation of precipitation after the CMOS-type cycle 
("p5" compared to "p3" in Figs.4,5,6). 

4 Summary and conclusion 

A general concept for systematically deriving coupled kinetic diffusion-precipitation equations 
has been proposed. Our recently developed computer model for oxygen precipitation is found 
to be in good agreement with a number of experimental results including CMOS-type anneals. 
It has been applied for investigating oxygen precipitation in order to help optimizing a CMOS-
type annealing cycle. Temperature ramps and cooling in crystal growth are found to have a 
significant influence on the number and size of the precipitates after the CMOS-type cycle. 
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centration calculated for 5 different CMOS-
type thermal anneals specified in Tables" lab. 
Circles, triangles and stars are experimental 
results for pl,p2, and p3 from Tables lab. 



122 

6 7 8 9 

INITIAL OXYGEN tlO^cm'3] 
10 

Figure 5: Concentration of oxygen precipi­
tates vs. initial oxygen concentration calcu­
lated for 5 different CMOS-type thermal an­
neals specified in Tables lab. 
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Figure 6: Average oxygen precipitate radius 
vs. initial oxygen concentration calculated for 
5 different CMOS-type thermal anneals shown 
in Tables lab. 
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Figure 7: Concentration of oxygen precipi­
tates vs. number of oxygen atoms in a pre­
cipitate (size-distribution function) calculated 
after pl,p2 and p3 shown in Tables lab. 5 
rate equations (steps) in combination with a 
Fokker-Planck equation are used. 
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Figure 8: Calculated size-distribution func­
tions shown at 4 succeeding temperatures dur­
ing cooling in crystal growth. 



- 10 18 _ 

E 
o 

10 IS 

o 
i— •< 

UJ 
(_> 
o 
u 

17 -3 Initial oxygen: 8.0'IQ1 cm 

c o l (crysta l growth) 

c o l + s p l (after ramp up)] 

c o l + s p l (f inal) 

- co l+sp5 (of ler romp up j 

109 

NUMBER OF 0-ATOMS n 

Figure 9: Calculated size-distribution func­
tion after cooling in crystal growth (full line), 
after ramp up (dotted line) and ramp down in 
subprocess spl (Tablelb), and for comparison 
after ramp up in subprocess sp5. 

CMOS-type cycles 

process= 

P l = 
p2 = 
p 3 = 

P 4 = 
p5 = 

sum of elements 
col+spl+sp2 
col+spl+sp2+sp3 
col+spH-sp2+sp3-t-sp4 
co2H-spl+sp2+sp3+sp4 
col-)-sp5+sp2+sp3-|- sp4 

Table la 

Elements of t he CMOS-type cycles 
step 

c o l ( c o o l i n g 1 ) 
co 2 ( c o o l i n g 2) 

s p l ( s u b p r o c e s s 1) 
(precipitate 
dissolution) 

sp2 ( s u b p r o c e s s 2) 
(Oxidat ion) 

(Well drive in) 

s p 3 ( s u b p r o c e s s 3) 
(Nitr idat ion) 

(Oxidation) 

s p 4 ( s u b p r o c e s s 4) 

sp5 ( s u b p r o c e s s 5) 
(precipitate 

1 dissolution) 

tempera ture 

1400°C -»450°C 

1400°C —450°C 

850°C -»1200°C 
+ 1200°C 

+ 1200°C -* 850°C 

850°C — 950°C 
-1- 950°C 

+ 950°C->1100°C 

+ 1100°C ->1200°C 
+ 1200°C 

+ 1200°C — 850°C 

800°C 
+ 800°C - 1 0 0 0 ° C 

+ 1000°C 

+ 1000°C -» 850°C 

800°C 
+ 800°C — 950°C 

+ 950°C 
+ 950°C - 850°C 

1000°C -»1200°C 
+ 1200°C 

+ 1200°C -» 850°C 

time 

10 h 

20 h 

70 min 
120 min 

70 min 

20 min 
60 min 
30 min 
50 min 

300 min 
175 min 

200 min 
40 min 

780 min 
75 min 

60 min 
30 min 

300 min 
50 min 

20 min 
120 min 

70 min 

Table lb 


