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Abst rac t 

The transient simulation of multiple semiconductor devices is critical in the analysis of 
dynamic effects such as latch-up. During transient simulation, a large system of coupled 
nonlinear partial differential equations (PDE) must be solved with considerable effort. In 
this paper, we present a method of decomposing the spatial domain of silicon (containing 
one or more devices) into smaller subdomains. A transient simulation algorithm can then 
use different time-steps within each subdomain and avoid a full solution of the nonlinear 
PDE's in areas where the solution does not change rapidly. 

1 Introduction 

The transient simulation of multiple semiconductor devices is critical in the analysis of dynamic 
effects such as latch-up and turn-on and turn-off transients [l] [2]. During transient simulation, 
a large system of coupled nonlinear part ial differential equations (PDE) must be solved with 
considerable effort. A popular technique to deal with such large problems is a strategy called 
domain decomposition. This technique has been used successfully to solve many classes of 
problems including parabolic, hyperbolic and elliptic PDE ' s by dividing the domain of the 
problem into smaller subdomains which are solved separately and with considerably less expense 

[3], W, [5]. 
In this paper, we present a method of decomposing the spatial domain of silicon (containing 

one or more devices) into subdomains. After decomposing the domain, the transient anal­
ysis algorithm uses different time-steps within each subdomain and avoids a full solution of 
the nonlinear PDE's in areas where the solution does not change rapidly. Although domain 
decomposition is often used with parallel algorithms, we show how it can be used without 
parallelization due to the relation between spatial and t ime domain latencies. 

Section 2 of this paper describes some inherent difficulties in transient simulation and ex­
plores the concept of latency in t ime and space. Section 3 explains the concept of decomposition 
and gives a flexible algorithm to decompose a silicon domain based on charge transport consider­
ations. In Section 4, we show the form of the equations after decomposition. In the last section, 
we show the results of applying the decomposition algorithm to a simulated MOS transistor. 



458 

2 Transient Simulation and Latency 

The nonlinear PDE's which arise in transient semiconductor simulation form a stiff system of 
equations with widely varying time constants which are dependent on the dielectric relaxation 
time, 7^ : 

Td = i (i) 
qHnn + qnPp 

Because the rate of spatial charge dispersal is exponentially proportional to r j we can expect 
regions of high charge density to react more quickly than those of low charge density, and in 
these regions a smaller time-step in the transient simulation will be necessary. Time Domain 
Latency (TDL) means that while some areas of the silicon domain are active, i.e., the rate of 
charge transfer is changing, other subdomains are dormant and the rate of charge transfer there 
is not changing as quickly. If we are able to separate these regions a priori then we can assign 
different time-steps to each. 

Although TDL has been explored in other classes of problems, such as network theory [6] 
[7] [8], it is not as simple to exploit in device analysis because the boundaries between silicon 
subdomains are not as clear as they are in hierarchical or modular circuits. It may not be 
correct to divide a multi-device circuit along the boundaries of each device because this ignores 
the underlying concept of dielectric relaxation and charge transfer. Instead, we can use the 
work of Ohtsuki [9] where the domain is approximated by lumped-elements and with these 
approximations formulate decomposition criteria. 

3 Motivation and Decomposition Principle 

Consider the case in Figure 1. We first discretize the basic semiconductor equations using finite 
differences on a tensor product grid. Between each pair of nodes on the grid there exists an 
edge, && , with associated electron and hole currents, Jn\b , Jp\b , and potential rpb . Each mesh 
edge also has associated length and cross section, Lb and Xb • 

As stated in [10], one common goal of decomposition is finding a useful geometric partitioning 
to exploit locality. The locality condition used in a semiconductor is charge transfer. We will 
cluster regions in the silicon where charge transfer occurs and make them the centers or nuclei 
of our subdomains. Between adjacent nuclei there will be regions of low charge transfer which 
in a circuit sense are equivalent to high impedances (or low admittances). By clustering the 
edges, bb , of high admittance, we form the nuclei of subdomains; by connecting the remaining 
low-admittance edges we form the boundaries between the subdomains. What remains is to 
find an expression for the admittance of a mesh edge. 

First, examine the expression for charge, Q*b, transferred through an area equal to the 
cross section Xb of edge bb at time tj. It can be expressed as the sum of electron, hole, and 
displacement currents: 

/•'•+* r BE 
dt (2) 

Unfortunately, this expression is not appropriate to decompose the domain a priori since 
the currents, Jn\b and Jp\b depend on the operating point. Hence, a low-impedance edge could 
be overlooked as an area of localized charge transport if no current was flowing through it at 
time U. 
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Figure 1: Terms defined on mesh. 

Instead, we use the concept of charge transfer sensitivity. We can obtain from (2): 

6Qi = fU-n 

dfo Jti 

b av dt 

. dJn\b dJp\b 
dxpb 

d 6Qb 

dt dipb 

+ € 
d_dE_ 

4>b dt 
dt (3) 

(4) 

where Y\, is the generalized mesh edge admittance, 
In order to develop an expression for this impedance which can be easily used in an al­

gorithm, we use the Forward Euler integration formula to integrate in time and we divide by 
h% to represent time derivatives, where h% is the time-step, fi+1 — ^, We make a first order 
approximation to the spatial derivatives by dividing by Lb . 

Under these assumptions, we obtain from (4): 

Xb 
Yb = j-iqpnnl + qfippl + -g) (5) 

Yb represents a generalized mesh edge admittance where the first two terms are a conduc­
tance and the last one is a capacitance. Since in depletion regions the first two terms will be 
relatively small, their admittances will also be smaller in comparison to the channel and contact 
regions. Also, in oxide regions, the permittivity e is lower than in silicon and a correspondingly 
lower admittance results. If an appropriate threshold value of the admittance, Yth , is used to 
determine the subdomains, the likely places for boundaries to occur will be in the depletion 
regions or oxide regions. Note that this conclusion relates to perturbation analysis [11] where 
the slowly varying solution occurs away from regions of steep concentration gradient. These are 
regions where Yb is low and where conduction current is not likely to flow. 

Equipped with an expression for Yth , the algorithm is fairly straightforward as shown in 
Figure 2. Any discritization which relates mesh nodes to mesh edges can be used. Mesh edges, 
bb , with admittances greater than Yth are grouped in nuclei by a crystalization-type process. 
Edges are sorted and selected in order of decreasing admittance and each is terminated by two 
nodes, N\ and iVj . When an edge is selected, if iv\ and N2 are not in any nucleus, a new 
nucleus is formed and Ni and JV2 are added to it. When a edge is selected and one of its nodes 
is already included in a nucleus, the other node is also added to this nucleus. Finally, if an edge 
is selected and its nodes belong to different nucleus, the nuclei and all nodes in them are merged. 
At the end of this process, we have clustered the regions of high-admittance into subdomain 
nuclei. We now form the boundaries between each subdomain. 
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Figure 2: Algorithms for Nuclei Formation and Border Formations 

The edges on the outer boundary of each subdomain nucleus are first identified. An edge is 
selected from a subdomain boundary and all adjoining edges and nodes are then added to this 
subdomain. When an edge is selected where JV*i belongs to one subdomain and N2 belongs to 
another, then a boundary is formed between Ni and N2 . The boundary line can be thought 
of as a perpendicular bisector to the mesh edge (as shown by the dotted line in Figure 1). The 
algorithm ends when all edges have been classified and all nodes belong to a subdomain. 

The domain is now composed of subdomain nuclei, surrounded by low-admittance edges 
which form a border with other subdomains. This configuration isolates areas of localized 
charge transfer with equivalent nonlinear capacitive and conductive elements which control 
current flow between subdomain nuclei. 

A critical point of the algorithm is the choice of Yth • Whereas a low Yth yields many 
subdomains (fine granularity) and a small sets of equations to solve for each, it introduces an 
unacceptably large border in the global block-bordered Jacobian matrix. Very coarse granularity 
provides little exploitation of the latency and limits flexible time-step control in the transient 
simulation. This tradeoff is explored in Section 5. 
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Figure 3: Bordered Block Diagonal Jacobian Matrix after Decomposition. 

4 Solution Techniques - Matrix Formulation 

The decomposed domain allows an efficient matrix forimilation of the set of discretized nonlinear 
equations if we use the method of node tearing [12], which has been successful in attacking circuit 
problems of large dimension or with repeated circuit blocks [7], [8]. 

In addition to the normal device variables, we explicitly list the the electron and hole current 
flux and the electric field between subdomain boundaries (along subdomain boundary mesh 
edges) as variables. Naming these new variables, B , we have: 

y = ( w i , w 2 , . . . , w n , B ) T 

v i = (ipi,nupi,...,tpm,nm,pm)T 

" = (^1 ,2 ) Jn,l,2> Jp,l,2>- • -Ej,fc> Jn,j,Jt, Jp,j,fcJ 

(6) 

(7) 

(8) 

where E j ^ , Jn j ifc,and JPi-7ifc represent the vectors of coupling variables between subdomain 
j and k. A block-bordered Jacobian matrix is thus formed as shown in Figure 3, where F< 
represents the discretized semiconductor equations in subdomain i and where there are k sub-
domains. The diagonal submatrices represent the Jacobian for each subdomain while the border 
terms of the matrix incorporate all the coupling flux between subdomains. In addition to the 
ability to maintain better control of the convergence through such methods such as a Modified 
Two Level Newton Iteration [8], [7] [13], there is now a possibility in the transient analysis to 
re-use information of some diagonal blocks from previous time-steps. 

If we use the one-step implicit time-integration algorithm based on exponential fitting: [14]: 

— = f(ip,n,p) 

m+i = n,- + h[cf(ipi+1,ni+1,pi+i) + (1 - c)f(ifiuni,pi)] (9) 

we can vary the free parameter in the range 0.5 < c < 1.0 for each domain, to minimize the 
truncation error while retaining the maximum time-step h. 

The local truncation error of (9), can be expressed as: 

Ei = h2[ 
2! c]/'0rO + *S[; 2! 

]f"(xi)+ ... +hr[± 
ni ( n - 1 ) ! ] / ( n ) (*i ) (10) 

Based on these local truncation error estimates, a different h^ for each subdomain, SDk, is 
found. Simulation events are scheduled at t ime U+hk. When a simulation event occurs for SDk, 
extrapolated estimates for the non-active subdomains can be used as the boundary conditions 
for SDk which means using approximations for the Jacobian submatrix | ^ where(m ^ ib) 
instead of fully recomputing these submatrices. 
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Figure 4: Flow of Transient Device Simulation. 
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Figure 5: Graph showing dependence of domains on threshold value, Yt. 

This integration formula offers another opportunity to exploit the subdomain decomposition. 
If a set of subdomains are scheduled with events close together in time, these events can be 
merged and the free parameter c adjusted so that the estimated truncation error is minimized. 
This reduces some of the overhead of managing the events. 

Because of the nonlinearity and time-dependence of Y\, , some subdomains may need to be 
merged together during a transient simulation, but this can be monitored by the charge transfer 
between subdomains which is explicitly represented in the solution vector. 

A diagram of the flow of a transient simulation is shown in Figure 4. 

5 Examples 

The doping profiles and Poisson solution of a MOS transistor were obtained from MINIMOS 
[15] and were used to examine some characteristics of the decomposition algorithm. The mesh 
used for this purpose was generated by the simulator. Also note that a non-orthogonal mesh 
could have been used with similar results. In Figure 5 the best choice of Yth occurs at the 
plateau in the graph. Selecting Yth in this range yields a decomposition such that depletion 
regions and oxide regions become boundaries and we get a reasonable number of subdomains 
as shown in Figure 6. Note how the borders of the subdomains (indicated by a lack of mesh 
lines) occur in the depletion region indicating a charge transfer boundary as we would expect. 

6 Conclusion 

In this paper, we have shown an algorithm which can be used on general device geometries for 
decomposition into subdomains suitable for transient simulation utilizing latency. We have also 
provided the conceptual background for incorporating the decomposed regions into a transient 
device analysis utilizing event-driven simulation. 
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Figure 6: Doping profile and associated decomposition of a MOS transistor. 
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