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Abstract 

Robust and efficient grid refinement strategies for an adaptive multigrid simu­
lation of diffusion processes from implanted impurity profiles have been presented. 
The refinement criteria are based on global and local discretization errors estimated 
by extrapolation techniques. The local discretization error for the initial grid re­
finement and the global discretization error for the grid refinement during diffusion 
simulation are compatible and controlled by the same, problem independent, rela­
tive error parameter. 

1 Introduction 

A n adaptive grid generation method, which properly resolve discrete solutions and 
opera tors in different parts of the simulation domain, is a highly desirable feature for 
efficient and robust process simulation programs. However, the formulation of adaptive 
g r id structures and strategies for the simulation of diffusion processes, where remeshing 
approach have to simultaneously accommodate space and time dimensions, introduces 
s o m e critical design challenges: 

— Since adaptive grid structures are subjected to frequent changes during simulation 
in order to follow the evolution of the discrete solution, the remeshing strategies 
have to allow for an easy and efficient addition (or deletion) of refined grid areas, 

— The grid structures have to be as regular as possible in order to minimize the 
prolongation of interpolation errors introduced during the data transfer from the 
old to new generated grid structures. 

— Effective self-adaptive strategies should be based on an easily controllable discrete 
approximation accuracy estimator. 

— The adaptive grid structures for the initial solution and the solution evolution have 
to be generated by using compatible error estimators and the same tolerance level. 

— The adaptive grid strategy should be capable of running efficiently on parallel 
machines. 
In the present single-grid adaptive methods for the discrete approximation of diffu­

s ion process problems [1,2], i.e. the methods which use a single adaptive grid structure, 
t h e adaptivity is generally achieved by introducing a nonregularity into the grid struc­
t u r e . However, it is well known that the grid nonuniformity reduces the accuracy of 
discrete approximation, significantly increases the information contents necessary for 

1 This work was partially supported by Digital Equipment Corporation through the European External 
Research Program (EERP, contract YU-001) and by Science Council of the Republic of Serbia. 
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the grid structure modifications and reduces the parallelization abilities. This short­
comings typically result in lengthy global refinement processes which drastically reduce 
the simulation efficiency. 

In this paper we present an alternative adaptive grid approach based on the mult i ­
level local grid structures which successfully meets the desirable requirements for an 
efficient adaptive grid strategy and eliminates the most critical shortcomings of the 
single-grid adaptive approaches. 

2 A multi-level refinement process 

The principal idea of the multigrid adaptivity is to accomplish the grid refinement (or 
coarsening) in terms of extending (or contracting) noncoextensive, properly aligned 
uniform local grids on different discretization levels. The principal formulation of 
multigrid adaptivity is rather general and independent of the particular discretization 
approach. However, let us confine, for convenience, to the regular adaptive multi-level 
structure which is suitable for the two-dimensional finite-difference discretization. 

The basic discrete structure for the formulation of an adaptive multigrid system is 
an uniform lattice: 

L{h) = {p| p = {ah,0h); a,0 e Z) . (l) 

with meshsize h. In the multigrid context significant role play only uniform lattices 
with discrete meshsizes ht = /ii/2 i_1 (l e. Z) where I denotes discretization level (l > l) 
and hl is the coarsest meshsize. Consequently, L{ = L(hi) represent an uniform lattice 
on i-th discretization level. Using the term of the uniform lattice an uniform grid on 
the !-th discretization level is 

Gi = L,nDi . (2) 

Di c R2 is a two dimensional continuous domain where discrete approximation at 
least require the presence of l-th discretization level. The whole adaptive multi-level 
structure is a set of uniform grids 

G = {Gi,G2, •• • ,GM} (3) 

where on the first k discretization levels (fc > 2) the uniform grids are global covering the 
whole simulation domain D while the other grids are local covering only Dt c A - i and 
serve to produce different levels of refinement. M denotes the maximum discretization 
level defined with area(Z?w+i) = 0. 

The general multi-level refinement process is based on the successive generation of 
new finer local discretization levels provided that some error estimator and tolerance 
level are known on the currently highest discretization level. Suppose that the coarse 
grid Gi is given and that the error estimator and tolerance level indicate that elementary 
discretization cell fip surrounding grid point p = {xp,yp) has to be refined. Instead of 
introducing a new partition of fip, the elementary refinement structure 

#i+i(p) = {q| q = (xP + »x • hi+u yP + vy- h+i); Kl < k, \vy\ < k} . (4) 

has to be introduced on the (l + l)st discretization level. In (4) k is the width of 
the elementary refinement structure. The width k has to be selected so to adjusts 
the overlap between the subregion fir covered by elementary refinement structure and 
Di \ f i p . In multi-level adaptive techniques [3] this overlap is necessary to assure that 
coarse grid solution can be reliably used for the formulation of Dirichlet boundary 
condition at the internal boundaries of the local uniform grids. However, the size 
of the overlap area must not introduce unnecessary grid refinement. In that sense, 
elementary refinement structure with width k = 2 seems to be an optimal choice. 
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The generation of a new discretization level is completed with unification of all ele­
mentary refinement structures introduced over all coarse grid discretization cells which 
have been found to require a better grid resolution. With the given error estimator 
and tolerance level on the currently finest discretization level /, the next discretization 
level is generated as it is described in Algorithm 1. 

Algorithm 1 (Local Grid Refinement) 

Here Gh e and Tol are given local uniform grid on the currently finest discretization 
level I, the discrete error estimator and the tolerance level, both defined on G;. This 
algorithm produces a local uniform grid GJ+1 which refines the grid G;. 

1. Set Gl+1 = 0 
2. Repeat Steps 3 for all p e G; 

3. If(e,[p]>Tol[P]) 
Set Gi+i :=(?!+! u£ i+1[p] 

[End of If structure] 
[End of Step 2 loop] 

4. Exit 

It should be noted that the multi-level refinement process is tightly coupled with 
adaptive multigrid algorithm [4] which actually supplies the refinement process with the 
discrete solutions at different discretization levels in order to be used for the formulation 
of the required error estimators and tolerance levels. 

In order to handle the adaptive time integration a nonuniform grid in time dimen­
sion should be introduced. The simplest approach is to use the same time-step size for 
all discretization levels in space. Naturally, the space adaptive multi-level structure 
should be regenerated at each discrete moment of time. It is important to note that 
t h e interpolation of the previous discrete solution defined on G{tn-i) into G(tn) takes 
place only at the new generated parts of the corresponding local grids, since due to 
t h e strictly regular nature of the adaptive multi-level structure the grid points of the 
remaining local grid parts do not change their positions. 

3 Refinement criteria 

T h e adaptive simulation of diffusion processes requires two different grid refinement 
processes in space dimensions: one for the adaptive discrete approximation of impurity 
profiles for initially implanted impurity profiles which are introduced at the beginning 
of processing or superposed to the existing impurity profiles at the certain stage of pro­
cessing and other for the adaptive discrete approximation of the intermediate impurity 
profiles during the diffusion process simulation. 

3 . 1 G r i d re f inement d u r i n g diffusion process s imu la t i on 

In the case of space-grid refinement during the diffusion process simulation the 
error estimator 

ei = \{C)i-Ci\ (5) 

is the ultimate goal of all adaptive approaches for the simulation of the diffusion pro­
cesses. In (5) {C)t is the continuous solution of the diffusion problem presented on the 
l-ih discretization level while C\ is the corresponding discrete solution. Since for the 
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impurity distribution typically holds C > Cmin where Cmin is the minimum concentration 
of interest for simulation the tolerance level naturally has the form 

T o U R e l C, + Cmin (6) 

where Rel is the problem independent relative error parameter. 
It is important to note that due to inability of the single-grid adaptive approaches 

[1,2] to efficiently and accurately estimate global discretization error (5), those are 
restricted to the application of some approximation of the local discretization error 
with fixed problem dependent tolerance levels. 

On the other hand, an adaptive multigrid algorithm [4] naturally generates discrete 
solutions of discrete diffusion problem on different local discretization levels which is 
suitable for the direct estimation of the global discretization error using Richardson 
extrapolation described in Algorithm 2. 

Algorithm 2 (Estimate Global Discretization Error) 

Here G(_i, G,, Cj_i and Ct are local uniform grids on the two successive discretization 
levels and corresponding discrete solutions of impurity diffusion problem, p is the 
order of the discrete approximation. This algorithm produces the approximation of 
the global discretization error e/. 

1. Repeat Step 2 and 3 for all p e G i 
2. Set ( e / ) i - i . -=(2P-l)-1((C,) , - i 
3. Set S| := (ci)t-i 
4. [End of Step 1 loop] 
5. Repeat Step 6 for p e G, \ G,_i. 
6. Set e, := /((*,),_!) 
7. [End of Step 5 loop] 
8. Exit 

It is important to note that the global discretization error of the l-th. discretization 
level is estimated on the subgrid which belongs to the coarser discretization error I - 1. 
Therefore, it is necessary to interpolate e( from (I - l)th to l-th discretization level by 
using the operator / . 

3.2 Initial grid refinement 

In order to formulate a refinement criterion for the initial grid, which should approxi­
mate implanted profiles with the same tolerance level (6), the following error estimator 
has been introduced: 

e'=((LH,-L , c ,')/ iD- "» 
where (C)t is the continuous implanted impurity profile presented at the l-th discretiza­
tion level. This error estimator actually approximates the error in the local dose con­
tents inside the elementary grid cell AD and represent the local discretization error of 
the discrete operator: 

Wi((C)i) = / (C)i/±D. (8) 
J AD 

Adaptive multigrid discretization implies the existence of the compatible discrete 
operators (8) on different discretization levels which is suitable for the application of 
the local discretization error extrapolation technique which is described in Algorithm 3. 

- i n G , 
- CJ- I ) 
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Algorithm 3 (Estimate Local Discretization Error) 
Here G(_i, G(, (G)i-i and (C), are local uniform grids on the two successive discretization 
levels and corresponding discrete presentation of implanted impurity profiles, p is the 
order of the discrete approximation. This algorithm produces the approximation of 
t h e local discretization error et. 

1. Repeat Step 2 and 3 for all p e G(_i n G» 
2. Set (c,)i-i == (2" - l)"1 • (W-xKC),-!) - ((W,(C),),_i) 
3. Set ej := (ei)i-i 
4. [End of Step 1 loop] 
5. Repeat Step 6 for p e Gt \ G|_i 
6. Set «, := J((e,)<-i) 
7. [End of Step 5 loop] 
8. Exit 

4 Example 

All multigrid strategies described in the previous sections are incorporated into the 
two dimensional process simulation program MUSIC (MUltigrid Simulator for IC 
processes) [5]. The adaptive grid generation scheme is demonstrated by the simulation 
example 01 boron implantation and diffusion. The adaptive multigrid structures and 
boron concentration profile after the implantation process (sokeV, I016cm~2) are shown 
i n Fig.l. The final multigrid structures and boron concentration profile after 30 minutes 
diffusion at 1000°G are shown in Fig.2. The one dimensional boron profile and grid 
evolution during the diffusion process is shown in Fig.3. 

a) b) 
Figure 1: The adaptive multigrid structures (a) and boron concentration profile after 
ion implantation (b). 
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Figure 2: The final multigrid structures (a) and boron concentration profile after 
diffusion (b). 
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Figure 3: One dimensional profile and grid evolution during diffusion process. 
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5 Conclusion 

The multi-level local grid concept offers a unique and qualitatively different adaptive 
environment than any single-grid adaptive approach because it gives the required 
nonuniform resolution of the discrete approximation by using only uniform local grids 
•which makes the implementation and handling of global adaptive structures easy and 
inexpensive. 

In this paper we have presented efficient and robust adaptive strategies which take 
advantage of the discrete solutions and operators on different discretization levels. 
Moreover, the refinement criteria for the initial grid generation and grid modifications 
during diffusion simulation are based on the local and global discretization error with 
the same tolerance level controlled by the problem independent parameter. 
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