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Abstract 
The density of states effective mass and the carrier concentration effective mass have 
been computed for strained SiGe for various Ge fractions, x. The computations take into 
account the effects of spin orbit coupling due to the inherently high strain involved. A 
generic expression of the valence band structure of any semiconductor under strain has 
been developed, based on which we have computed the various scattering relaxation 
times, viz., acoustic, optical, and alloy, for subsequent mobility calculations. The 
resulting mobility which' turns out to be a tensor, is presented for various Ge fractions 
under strained and unstrained conditions. 

L Introduction 

A new and promising material in the area of semiconductor devices is the strained SiGe alloy. 
The strain is a consequence of the difference in lattice constants between the SiGe and <001> Si 
subst ra te it is grown on. This inherent strain results in favourable electronic transport and optical 
properties [1] (i.e. higher mobility and a reduction in band gap), making SiGe very attractive for 
fabrication of high performance transistors such as MODFETs, heterojunction bipolar transistors, 
r e s o n a n t tunneling diodes, and most importantly, optoelectronic devices for long wavelength 
applications [2]. In view of the desirable electronic properties of strained SiGe, adequate physical 
mode ls have to be developed for realistic simulation of SiGe based devices. The starting point in 
physical parameter modeling is a study of the band structure. With knowledge of the energy 
spec t rum of strained SiGe, physical parameters such the band gap, effective mass, the effective 
dens i ty of states as well as the density of states, can be obtained. Furthermore, the energy spectrum 
al lows calculation of the scattering relaxation times and subsequently, the carrier mobility. 

I n this paper, we first examine the effects of strain on the valence band for any semiconductor in 
genera l , and present a generic expression which includes the effects of spin-orbit coupling. This is 
subsequently applied to the SiGe alloy system, and the density of state (DOS) effective mass as well 
as t h e free carrier concentration (CC) effective mass are computed. A systematic calculation of the 
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various lattice scattering relaxation times is then shown; the most important being acoustic, optical, 
and alloy. An effective relaxation time is then obtained using Mathiessen's rule, from which we 
obtain the lattice mobility based on the first order expansion of the Boltzmann's transport equation. 
In view of the inherently large strain, the band structure reduces from 3-fold to 2-fold symmetry 
resulting in a tensorial mobility, 

H Valence Band Structure Under Strain 

The effect of strain on the valence band was first presented by Pikus and Bir [3], They obtained a 
closed form expression of the band structure, which was derived by taking a first order perturbation 
about the strain tensor e = 0 in the one electron Schroedinger equation, viz., 

*,2 n 
— V2+ V0(r) 
2m e 

U k j = E ^ • , (1) 

where m is the mass of the electron, In denotes Planck's constant divided by 2K, VQ(r) is the periodic 

potential of the unstrained unit cell, E £ is the energy spectrum of the unstrained material, and Ufc . 

is the unstrained degenerate electron wave function transforming according to the representation 
+ 
25 r9s . (i.e. j= yz,zx,xy). 

In their equation [3], however, the effects of spin orbit coupling were ignored. In strained SiGe, 
typical strain levels are of the order of thousands of atmospheres. In view of this large strain, it 
becomes clear that the effects of spin orbit coupling have to be included in order to obtain a more 

accurate representation for the valence band structure of Sij.xGex . To include spin-orbit coupling 

one needs to consider a set of degenerate basis functions (1,0) (spin-up) and (0,1) (spin down) as well 
as the k-independent spin orbit perturbation matrix [4], By using this approach, we obtain the 
following expression for the valence band structure applicable to all strained semiconductors, 

3 3-j • 
£ £ a..(9,<M)Ekk2j = 0, (2) 

j=o i=o J1 k 

where polar coordinates, k, <j>, 0 have been employed. The components a- are functions of the 

deformation potentials, the band parameters, 0 and <j), and the strain elements. A comprehensive 
treatment of the above approach will be presented elsewhere. Equation (2) yields three distinct values 

of E, for a particular value of k; each of which corresponds to the so called heavy hole (HH), light 

hole (LH), and spin-off (SO) bands. The splitting of the valence bands due to strain can be 

calculated using equation (2) by setting k = 0. Solutions to equation (2) for either Ek(k) or k2(Ek) can 
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be obtained by a trigonometric method. In calculating the band structure of SiGe, we assumed that the 
b a n d parameters varied from Si to Ge in accordance to the results obtained by Lawaetz [5]. 

In Figs. (1) and (2), a plot of the energy spectrum and a cross sectional view of a constant energy 
surface is given for the HH and LH bands of pure silicon and strained SiGe (the composition of Ge 
be ing 0.3) [6]. The HH band moves upwards due the strain and becomes asymmetric in the xz and xy 

p l anes . From Fig. (lb), we can deduce that the tensorial effective mass in the k direction is larger 

t h a n the corresponding mass in the k (or the k ) direction. This in turn produces a lower mobility 

in t h e z-direction compared with the y- or x-directions. The same applies for the LH band (see Fig. 
2b). The key difference in the two bands (LH and HH) is that the LH band moves downwards and the 
H H band moves upwards (see Figs, la and 2a). 

HL Effective Masses 

The density of states effective (DOS) mass provides a convenient way of describing the the mass 
of a carrier that is needed to produce the correct density of states when compared to the ideal free 
ca r r i e r relationship [7]. By comparing the DOS effective mass for strained p-type SiGe to that of one 
wi th a spherical parabolic band structure, the following expression for the DOS effective mass is 
obtained, 

mDOS ( E ) T 1 dVl ^ - f i S ^ 

m o 
_27tVi"dE_ 2m 

(3) 

w h e r e dV/dE is the change in volume dV in k-space for a change in energy dE. 

Selected results for the DOS effective mass are shown in Fig. 3 for the following Ge 
compositions: 0%, 5%, 10% , 20%, and 30%. For both HH and LH bands, the DOS effective mass 
becomes lower as the Ge composition increases, leading to an increase in the mobility. The lowering 
of t h e DOS effective mass is mainly due to the strain and not due to the interaction of the Si atoms with 
the G e atoms. 

The carrier concentration effective masses, m^^CT) for the valence bands in SiGe as a function 

of temperature, T is next calculated using, 

m CC ( T ) = J = P3^ f E l / 2 m DOS ( E ) e xP ( -PE)dE> (4> 
0 

which was derived using Maxwell Boltzmann's statistics. Here, kg is Boltzmann's constant and p 

= (kj jT) - 1 . Note that the nonparabolicity of the band structure is accounted for by mrjQg(E). In Fig. 

(3), results of the CC effective mass as a function of temperature for various Ge fractions are shown 

k 
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for the HH and LH bands. As the Ge fraction increases, the corresponding strain increases thus 
producing a decrease in the CC effective mass. The total CC effective mass, viz., 

, 3/2 3/2 .9/0 
mCC,total = ( "CXM + "002} ' (5) 

is shown in Fig. 4. Note that at high temperatures, the total CC effective mass becomes virtually 
temperature independent. In Fig. 5, results of the CC effective mass as a function of Ge composition 
are given for two widely used device temperatures. Note that there is a significant reduction in the 
CC effective mass as the Ge fraction increases. For pure silicon (x = 0) we reproduce the well known 

results at 300 K, i.e. nv<r< fotal = *•* m • ^ x = $0%, there is a dramatic reduction in the CC effective 

mass. Relative to Si (x = 0), the mass is lowered by a factor of three. 

IV. Mobility 

The three major scattering relaxation times that will be considered are non-polar optical, 
acoustic phonon, and alloy. To simplify the expressions for the relaxations times, we make the 
following assumptions: (i) acoustic phonon scattering is perfectly elastic, (ii) optical phonon 
scattering occurs inelastically, (iii) the holes scatter isotropically, (iv) alloy scattering is 
independent of temperature, and (v) the relaxation times are only functions of energy and do not 
depend explicitly on k (i.e. the overlap integral is unity). 

In acoustic phonon scattering, energy and momentum conservation restricts intra-valley 
scattering by acoustic phonons to long-wavelength modes. Such modes cannot change the energy of 
an electron other than through the elastic strain associated with them. A long-wavelength acoustic 
displacement cannot effect the energy since neighboring unit cells all move by almost the same 
amount; only differential displacement, namely the strain is of importance. Using deformation 

potential theory and by defining an effective deformation potential, Eg^for the valence band, the 

total acoustic phonon scattering relaxation time, T is given by 

*kBT Eeff 
1 N(E), (6) 

T 
ac 

-hpuj 
2 

where N(E) is the total density of states in the valence bands, p is the material density, and u, is the 

velocity of sound in the material. In the above equation, we assume that the scattering of holes in 
each sub-band contributes to the relaxation time independently. 

As in the case of acoustic phonon scattering, energy and momentum conservation restricts 
intra-valley scattering by optical phonons to long-wavelength modes. However, unlike the case of 
acoustic phonons, long wavelength optical displacement may effect the electronic energy directly. 
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Optical phonons have a characteristic frequency, (0 which is independent of it's wave vector, 

whereas in the case of acoustic phonons, the frequency is found to be linearly related to the wave 

vector . By defining an optical phonon coupling constant D.K, the relaxation time due to optical 

phonons is given by the following expression, 

1 *°tK2 

— = [ n(coQ) Nj(E + hcoo) - (n(a)o) + 1) Nj(E --hcoQ) ], (7) 
T 2pC0 

op r o 

whe re n(co ) is the Bose-Einstein phonon distribution with optical phonon frequency, co . In Eqn. (7), 

the first and second terms represent the creation and annihilation of a phonon. Since each sub-band 
(i.e. HH, LH and SO bands) can scatter a hole into any other sub-band, providing that the density of 
s t a t e s of that sub-band is non-zero, the total optical scattering relaxation time is given by the 
following sum, 

1 ^ 1 

Top ^ ^ T o p 
i=l 

I n alloy scattering, the fluctuations from uniformity give rise to local changes in the Coulombic 
p o t e n t i a l experienced on the average by the hole, and hence to scattering. Since these fluctuations 
s h o u l d be independent of tempera ture , the alloy scat ter ing relaxation t ime should also be 
i n d e p e n d e n t of temperature, viz., 

- p — =|u2Qx(l-x)N i(E), (9) 
xalloy 

where U is the interaction potential, Q. is the volume of the cubic cell, and x as usual denotes the Ge 
fraction. The interaction potential has various interpretations. It can be taken as the difference in 
b a n d gap of the two components in binary compounds, or the difference in their electron affinities. 
So i t i s probably prudent to regard U as a quantity that has to be determined empirically. 

The relaxations times discussed above were combined using the Mathiessen's rule, resulting in 
an effective relaxation time, x(E). Using x(E), the mobility of strained SiGe is then calculated using 
the following form, 

* 2 
d 3 k T ( E ) ^ ^ . 

dk. a k j 3 E 

"j j = , (10) 

fd3kf(E,Ef,T) 

i 
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which is based on a first order expansion of the Boltzmann's transport equation. In Eqn. (10), |X-. 

denotes the mobility tensor, e is the elementary charge, kj are the components of k (i, j = x, y, z), E is 

the hole energy, E f is the Fermi-level, T is temperature, and f (E, E^ T) = exp ([E - E .̂]/T). Since the 

energy spectrum of the valence band is found to have only 2-fold symmetry, the mobility becomes a 
tensor taking the following form, 

^P 

*Scx ° ° 
0 hex ° 
0 ° ẑz J 

(11) 

where u = u only when x = 0 (i.e. at zero strain, e = 0). This result requires one to solve the drift-xx yy 

diffusion equation in the following tensorial form, j = - q p |i • grad 4 . 

The values of the various parameters used in our mobility calculations are shown in Table I, 
Parameter values that are not known for SiGe, have been determined using a linear interpolation 
between the values of Si and Ge. The value of the alloy interaction potential was chosen such that our 
calculated results fit the trends of measurement data of Hall mobility in unstrained SiGe [8]. We 
have only considered the mobility at 300 K. At lower temperatures, the Ge atom acts like an impurity 
in Si (activation energy ~ 0,5 eV) and this can be attributed to the fact Si has a larger electron affinity 
than Ge. 

TABLE I: Parameters used in calculations. 

Parameters Units Silicon Germanium 

Eeff 

DtK 

U 

Results of the mobility of strained and unstrained SiGe at 300 K are shown in Fig. 7. We indeed 
recover the results of the unstrained lattice hole mobilities of Si and Ge (i.e. x = 0.0 and x = 1.0, 
respectively). Under strained conditions, the distortion in the band structure introduces anisotropics 
in the mobility, which results in a tensorial mobility with an in-plane component (parallel to surface 
of the crystal) and a component along the growth plane. We note that the strain drastically increases 
the mobility, with the in-plane mobility component being significantly larger than the perpendicular 
counterpart. This can be better understood with Figs. 1 and 2; the cross section energy spectrum 
shows a larger effective mass in the z-direction compared with that of the y- or x-directions. 

eV 

eV/cm 

eV 

5.2 

6.6xl08 

0.27 

6.9 

5.9xl08 

0.27 
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Empirical relations describing the hole lattice mobility components at room temperature were 
determined to be as follows: 

^xx = ^Si e xP [ x axx ( x ) ]> 

^zz = ^ i e x P [ x a z z ( x ) ] ' ( 1 2 ) 

where Ug- = 459 cm^/Vs and the a's are fourth order polynomials which are functions of the Ge 

fraction, x. The coefficients of the respective a's are listed below in Table II. 

TABLE II: Coefficients for a and a 
XX ZZ 

Degree a x x a z z 

4 35.1904 40.2994 
3 -78.1230 -89.5728 
2 59.5064 67.0455 
1 -15.4922 -17.4045 
0 2.8737 2.6027 

V. Conclusions 

By incorporating the effects of spin-orbit coupling into the strained valence band structure, we 
compute the DOS and CC effective mass as well and the scattering relaxation times associated with 
optical , acoustic, and alloy scattering mechanisms. The resultant lattice mobility of holes is then 
computed, and is found to be a tensor due to the strain-induced anisotropies in the band structure. We 
are currently incorporating the effects of impurity scattering on mobility. 
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Fig 1. (a) Spectrum of the HH band in the k and k directions. 

(b) Cross-section of an energy band shell in the k -k z plane; dashed line represents Si 

(x = 0.0) and the solid line SiGe (x =0.3). 
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Fig 2. Same as Fig. 1, but for the LH band. 
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Fig 3. (a) DOS effective mass (normalized with m ) for the HH band in SiGe. 

(b) DOS effective mass for the LH band. 
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Fig 4. The normalised CC effective mass 
for heavy holes and light holes 
as a function of temperature. 
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Fig 6. CC effective mass for T= 77 K and T = 300 K as a function of Ge fraction. 
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