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Abst rac t 

This communication presents a critical analysis of the relaxation rates which are used 
in the hydrodynamic models for the simulation of semiconductor devices. From the balance 
equations and the correlation functions for a set of relevant variables we show that at least 
three different definitions of relaxation rates can be introduced. The results so obtained 
for the case of p-type Si at 77 K are discussed in terms of similarities, differences, and 
corresponding ranges of application. 

1 Introduction 

The modeling of semiconductor devices by using hydrodynamic equations requires the knowledge 
of a set of phenomenological relaxation rates which are connected with the corresponding hydro-
dynamic variables velocity v and energy e of the carriers [1,2,3,4]. At low temperatures, when 
the dopants are only partially ionized, the fraction of free carriers u becomes field-dependent 
and thus also becomes a hydrodynamic variable. Then, from the balance equations [5,6], for 
the case of homogeneous and steady-state conditions at the given field, the corresponding phe
nomenological rates are introduced: 
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where l / r u is the number (carrier density) relaxation rate , 1/T„J the longitudinal velocity relax
a t ion ra te , and l / r e the energy relaxation rate. In the above equations rg is the mean generation 
t ime, m is the effective mass (here assumed energy independent), e the electronic charge, vi the 
longitudinal velocity, E the electric field, Kg the Boltzmann constant, T the lattice tempera
ture and brackets indicate ensemble averages. However, these rates in general do not describe 
rigorously the relaxation of the variables to their stationary value. Due to microscopic coupling 
between different variables, this relaxation is related to a relaxation matr ix which describes 
the time decay of the correlation functions of the corresponding variables. In the following we 
will show that the knowledge of this matrix and its eigenvalues represents a useful tool for the 
physical analysis of different relaxation processes. Therefore, the scope of this work is to present 
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the different definitions of relaxation rates, discussing the main similarities and discrepancies 
among them and the corresponding ranges of application. 

2 Theory 

Starting from a quantum mechanical derivation of generalized Langevin equations, it has been 
shown [7] that under suitable approximations (i.e. separation of the time-scales between the 
"relevant" and the "irrelevant" variables and neglect of memory effects) a closed system of 
equations of motion for the correlation functions of a complete set of relevant variables Pm,m = 
1 , . . . , M can be obtained in the form of a set of coupled relaxation equations as: 
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with SPi(t) - Pi(t) - (Pi). The important property of Eq. (4) is the fact that the relaxation 
matrix a does not depend on the index i of the first variable. This permits a unique determina
tion of the elements ctij from the knowledge of the initial conditions $,j(0) and ^$i j (0) . The 
elements are given by the standard formula: 
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where D = det{$kl(0)} and Dij is the determinant obtained from £>, if in column j the values 
§kj(0) are replaced by -gj$fc;(0). The general solution of Eq. (4) can be written as 
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where a^ is the i/-th eigenvalue of a, xjy-v' the j-th component of the corresponding eigenvector 

and c\"' the expansion coefficient given by the scalar product 
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$£' is the eigenvector of the transposed matrix aT corresponding to the eigenvalue a(") and we 
have taken normalized eigenvectors. The relaxation matrix a in general is not symmetric, thus, 
the eigenvalues may not only be real, but there can also exist pairs of complex conjugate values. 
Since the correlation functions must be real, in this case also the eigenvectors and expansion 
coefficients must be complex conjugate. 

Within the above scheme we are now able to analyze the various correlation functions and 
the corresponding relaxation rates. 
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3 Results 
As application we have used a Monte Carlo (MC) simulation to calculate first-order and second-
order quantities of the relevant variables for the case of charge transport in nondegenerate p-type 
Si at 77 K under the influence of an electric field of arbitrary strength. We consider the strong 
extrinsic regime (i.e. negligible compensation) with a two level conduction mechanism, the 
impurity centers and the conducting band. The microscopic model uses a single valence band 
(the heavy hole band) warped with nonparabolicity effects accounted for. Acoustic, nonpolar 
optical, ionized impurity scattering, and impact ionization from shallow centers are included in 
the simulation. A nonradiative generation-recombination (GR) mechanism from shallow levels 
assisted by acoustic phonon (cascade capture model) is introduced. A linear recombination 
kinetics is considered and the Poole-Prenkel effect is accounted for [8]. The very good agreement 
obtained between calculations and experiments, which supports the physical reliability of the 
model used, have been already reported in Ref. [9]. 

Figure 1 shows the mean values of the fraction of free carrier, the longitudinal velocity, and 
the carrier energy as a function of the electric field. 
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Figure 1: Mean values of the relevant variables as a function of the electric field applied parallel 
to the (100) crystallographic direction. Values are obtained from a Monte Carlo simulation for 
the case of p-type Si at 77 K with an acceptor concentration NA = 3 X 1015 cm~3. 

Since we have a cubic semiconductor with an electric field in the (100) direction, the mean 
value of the transverse velocity remains always zero. The fraction of free carriers increases with 
increasing field mostly due to the suppression of recombination processes which occur practi
cally only from the bottom of the band. At high fields the generation mechanism is additionally 
enhanced due to the Poole-Frenkel effect and eventually u reaches unity because there all im
purities are ionized. The longitudinal average velocity, after an initial Ohmic increase, tends to 
saturate at fields above some 10 kV/cm. The mean energy at intermediate fields shows only a 
slight increase and at high fields, when the cooling due to optical phonons becomes less efficient, 
increases strongly. 

From the results concerning the correlation functions, it emerges that the five variables u, v 
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and e to a good approximation indeed form a complete set of relevant variables. For symmetry 
reasons the transverse velocities vt do not couple to the other three variables. Thus, the matrix 
a is diagonal with respect to these quantities, the diagonal elements being identical and defining 
the relaxation rate of the transverse velocity. Effectively, we have to consider only a 3 X 3 matrix 
for the variables u, vt and e. Although in Ref. [7] the microscopic formula for the matrix a 
is derived using projection operators into the relevant subspace, for any real bandstructure 
and interaction processes this formula is impossible to be solved analytically. However, at a 
phenomenological level, a is totally determined by Eq. (6). Thus, using the initial values $,j(0) 
and 2t^ij(0) from the MC simulation as input, we can calculate the matrix a, its eigenvalues 
and eigenvectors as well as the expansion of §ij(t) into the sum of the exponential functions in 
Eq. (7). 

Figure 2 shows the auto-correlation functions and Fig. 3 the cross-correlation functions for 
an intermediate field strength. 
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Figure 2: Auto-correlation functions normalized to their initial values in p-Si at 77 K with 
NA = 3 X 1015 cm'3 at an electric field of 2.5 kV/cm as a function of time obtained from the 
expansion into eigenvectors of the matrix a. 

By using the property (6Pi(0)SPj(t)) - (SPi{-t)SPj(0)}, we have drawn the cross-correlation 
functions on a symmetric time axis so that each curve corresponds to a pair of functions. 
Here, because of the far from equilibrium conditions, all correlation functions exhibit structures 
which are related to the different scales of the relaxation rates involved. The shape of the auto
correlation functions has already been discussed in the literature [10]. Therefore, we concentrate 
on the cross-correlation functions which have been only recently presented by the authors [11]. 
Due to the symmetry all cross-correlations with the transverse velocity vanish. The structure 
of the other cross-correlation functions is related to the energy dependence of the scattering 
mechanisms, which in the present case always leads to an increase of the scattering rate with 
increasing energy. Therefore, when considering the correlation function between vi and e, we 
argue as follows: In the positive time region, if initially a positive fluctuation of v\ occurs, at 
a later time, due to the large absorbed power, a positive fluctuation of e is likely to occur; for 
the same reason an initial negative fluctuation of vi will lead to a negative fluctuation of s. 
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Figure 3: Cross-correlation functions in p-Si at 77 K with NA = 3x 1015 cm~3 at an electric field 
of 2.5 kV/cm as a function of time obtained from the expansion into eigenvectors of the matrix 
a. Continuous, dotted, and dashed lines refer, respectively, to §VlC(t), §„,„(<) and §ue(<). The 
function $Uje(t) is normalized to its initial value, other functions, having a zero initial value, 
are normalized to their maximum. 

Thus, the initial slope of the correlation function between vi and e will always be positive. On 
the other hand, in the negative time region, we find that if initially a positive fluctuation of e 
occurs, at a later time, due to the increased efficiency of the scattering, a negative fluctuation 
of vi is likely to occur; for the same reason an initial negative fluctuation of e will lead to a 
positive fluctuation of v\. Thus, the initial slope of the correlation function between e and vi 
will always be negative. At short times its behavior is governed by the relaxation time of the 
longitudinal velocity, while the asymptotic decrease is governed by the energy relaxation-time. 
This function vanishes linearly at lowering field strengths. 

The cross-correlation functions between the fraction of free carriers and energy or veloc
ity vanish at zero time because in the case of non-interacting particles these fluctuations are 
independent. Due to the energy dependence of the recombination and generation probability, 
however, fluctuations at different times are correlated. An initial positive fluctuation of u leads 
to an increase in the recombination probability near the bottom of the band, thus increasing 
the average energy of the carriers in the band. Also, an initial negative fluctuation of u leads 
to a large generation probability at low energies reducing the average energy of the carriers. 
Therefore, the correlation between u and e increases on the time-scale of the energy relaxation 
time and then returns to zero on the time-scale of the lifetime. In the negative time region 
the function exhibits qualitatively the same structure, since an initial positive (negative) fluc
tuation in energy leads to a decrease (increase) in the recombination probability. Thus, it is 
likely to have a positive (negative) fluctuation in u at later times. The correlation function 
between vi and u has the most complicated structure. In the positive time region its behavior is 
qualitatively like that one of the correlation function between e and u. Since GR processes are 
symmetric in k-space, the time-dependence is mainly governed by the energy fluctuation which 
is always associated with an initial velocity fluctuation. In the negative time region, however, 
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all three characteristic time-scales are important . The reason for this is the following: As al
ready discussed above, a positive fluctuation in u leads to an increase in recombination from 
the bo t t om of the band. Since particles with a small velocity are removed, the average velocity 
increases. But now also the average energy of the carriers increases leading to a stronger scatter
ing efficiency (see the discussion for the correlation function between vi and e). Therefore, the 
velocity decreases below its mean value and the correlation function becomes negative. Finally, 
on the time-scale of the lifetime, the system returns to its stationary state and the correlations 
disappear. The same arguments hold for the time-evolution after an initial negative fluctuation 
in u. 

In Figure 4 we have plotted the phenomenological relaxation rates of Eqs. (1) to (3). 
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Figure 4: Phenomenological relaxation rates as a function of the electric field applied parallel 
to the (100) crystallographic direction. Values are obtained from the Monte Carlo simulation 
for the case of p-type Si at 77 K with NA = 3 X 1015 cm-3. 

Their field dependence reflects the presence of hot-electron conditions. Accordingly, at 
increasing fields the number relaxation rate tends to decrease because of the field assisted 
ionization mechanism which is due to both: carrier heating and Poole-Frenkel effect. The 
longitudinal-velocity relaxation rate tends to increase because of the increased efficiency of the 
scattering mechanisms. The energy relaxation rate exhibits a maximum at about 50 kV/cm and 
then decreases at the highest fields because of the smaller efficiency of scattering to dissipate 
the excess energy gained by the field. 

Figure 5 shows the field dependence of the diagonal components of the relaxation matr ix , 
calculated from the correlation functions as given by Eq. (6) (in this case, also the transverse 
velocity relaxation rate can be evaluated). 

In the absence of coupling they would represent the respective relaxation rates for the 
fraction of free carriers, their velocity and energy. Indeed, their field dependence is in good 
agreement with the phenomenological rates of Fig. 4. 

In order to interpret the coupling in the relaxation processes, we have calculated the eigen
values of the relaxation matrix a as a function of the electric field and we have plotted them in 
Fig. 6. 
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Figure 5: Diagonal elements of the relaxation matrix a as a function of the electric field applied 
parallel to the (100) crystallographic direction. Values are obtained from the Monte Carlo 
simulation for the case of p-type Si at 77 K with NA = 3 X 1015 cm~3. 

At low electric fields we have three different real decay rates, they can be interpreted as 
number relaxation rate, velocity relaxation rate and energy relaxation rate. Due to the cubic 
symmetry, at vanishing electric field the velocity relaxation rate is threefold degenerate. With 
increasing electric field the smallest eigenvalue, corresponding to particle number (dash-dotted 
line), exhibits a slight decrease reflecting the increase of the lifetime with the field. Since 
recombination processes occur practically only from the bottom of the band, their probability 
is reduced with increasing carrier energy. Therefore, the fraction of free carriers becomes nearly 
unity and the smallest eigenvalue is only determined by the generation rate. Above a field of 
about 25 kV/cm the recombination rate becomes so small, while at the same time the scattering 
rate becomes so large that from the MC simulation it is no longer possible to obtain a correlation 
function for u within a reasonable CPU time. However, since at these high fields the coupling 
between the other variables and u is negligible, it is sufficient to study the system without GR 
processes. 

The other two eigenvalues increase with the field because of the increasing scattering effi
ciency at higher energies. The energy relaxation rate (dashed line), however, increases much 
faster than the longitudinal velocity relaxation rate (solid line) due to the onset of optical 
phonon emission. At some electric field Ecrui ~ 0.9 kV/cm these two eigenvalues become equal 
and, increasing the field strength further, we have now a pair of complex conjugate eigenvalues. 
In this region velocity and energy relaxation are strongly coupled. A complex eigenvalue always 
indicates some kind of ordering in the system. In our case it is the joint action of the electric 
field and the emission of optical phonons. In its extreme case this is well-known as the condition 
of "streaming motion" [6,7]. When the electric field is increased further, there exists a second 
critical field 2Jcr;t2 ~ 60 kV/cm above which the eigenvalues again become real. At these very 
high fields, the dissipation in the system is now so strong that no ordering can be maintained 
anymore. 

Another interesting result is that the relaxation rate of the transverse velocity (dotted line) 
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Figure 6: Eigenvalues of the matrix a as function of the electric field. The solid, dotted, dashed, 
and dash-dotted lines refer to the eigenvalues corresponding to longitudinal velocity, transverse 
velocity, energy, and particle number, respectively. In the range between the two critical fields 
of about 0.9 kV/cm and 60 kV/cm, due to the large coupling between longitudinal velocity and 
energy, their corresponding eigenvalues are complex conjugate. There, the solid line refers to 
the real part and the triple-dot dashed line to the imaginary part. 

and the real part of the eigenvalue corresponding to the longitudinal velocity (solid line) are in 
very good agreement over the whole range of the electric field. This means that these quantities 
still define a relevant time-scale also for the longitudinal motion of the carrier system. 

We remark that at the lowest and highest fields the eigenvalues well agree with the phe-
nomenological rates as well as with the diagonal components of the relaxation matrix. 

4 Conclusions 

We have presented a critical analysis of the relaxation rates describing carrier transport at 
arbitrary electric field strengths. Three types of rates have been introduced: a phenomenological 
one, related to the balance equations, and two others which are rigorously derived from the 
correlation functions. While the former can be appropriately used to describe steady state 
transport, the rates obtained from the relaxation matrix seem to be more appropriate to analyze 
a.c. characteristics. 

This work has been partially supported by the CEC ESPRIT II BRA 3017 project. 
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