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Abstract 
A one-dimensional n-p-n BJT has been simulated by expanding the Boltzmann 

Transport Equation (BTE) in spherical harmonics. The solution provides the energy 
distribution of electrons as a function of position in the entire device with a reasonable 
CPU time. We compare the average velocity and energy with results of the hydrody-
namic model. 

1 Introduction 

Modeling hot electron effects in silicon is a challenging task which has gained increasing 
popularity in recent years. The aim is typically that of predicting substrate current and hot-
carrier injection into the gate oxide in MOSFET's, or impact ionization within the collector 
space-charge region of BJT's. The most common approaches in the literature are: i) the 
hydrodynamic (HD) model, and ii) the Monte Carlo (MC) particle simulation. The former 
can provide the first moments of the distribution function, such as mean velocity and energy, 
with good accuracy and little computational effort, but does not give any information on 
the high-energy tail. The latter, instead, can easily account for detailed physical effects 
at the expense of very large computational resources. Some proposals have been made to 
overcome the above limitations [1-4]. The basic idea in these papers is that of deriving from 
the BTE a simpler equation in the energy space by expanding the distribution function into 
a suitable set of basis functions. With some further simplifying assumptions, such as high 
energy and constant effective mass, an approximate analytical solution to the resulting 
equations can be worked out [2]. Otherwise, the problem can be tackled numerically. In 
[3] a numerical solution for the homogeneous conditions and constant electric field was 
obtained, and ionization coefficients were calculated in good agreement with experimental 
values. In [4], the expansion is extended up to the second spherical harmonics, and the 
band structure is generalized according to [5]. 

In this work we use a spherical harmonics expansion to reduce the BTE to the energy-
space domain (E,x). We show how the resulting system of equations can be solved numer
ically in one-dimension and apply this technique to obtain the electron energy distribution 
pointwise in a one-dimensional n-p-n BJT; next we compare the average velocity and energy 
with results from HD calculations. While the first moments can be approximately obtained 
with the HD model, the high-energy part of the distribution is not simply related to any 
average quantity. 
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2 Mathematical model 

We begin with expanding the distribution function / in series of spherical harmonics: 

/ ( r , k ) = /o(r,A;) + /1(r,A:)cos^ + / 2 ( r , / c ) i ( 3 c o s 2 ^ - l ) + . . . (1) 

where 6 is the angle between the crystal momentum k and the current density J. A system 
of equations for the unknown functions /,• is obtained by substituting the expression (1) into 
the BTE and equating the coefficients of the harmonics of the same order. The procedure 
is quite general. Considering acoustic and optical phonon interactions, as well as ionized 
impurity scattering, and a spherically symmetric band structure, the equations for / 0 and 
/ i in the (E,x) domain, in one-dimension, are 

^ {g(E + huop) [N+f0(E + huop) - Nfo(E)] - g(E - Tiwop) {N+f0(E) - Nf0(E - Tluop))} 
ug 

|/o-,^/o + i / , = 0 (2,6) 

In the above equations, j(E) is the band-shape function, g(E) the density of states, ug 

is the group velocity, N the optical phonon occupation number, N+ = N + 1, hu>op and 
cop the optical phonon energy and scattering probability, respectively, F the electric field 
and, finally, X(E) the carrier mean free path which, for the aforementioned scattering 
mechanisms, is expressed as 

X(j?) - U9JE) /3N 
k J cacg(E) + copN+g(E-huop) + copNg(E + huop) + Cimp(E,Ni)g(E) KJ 

In (3) cac is the acoustic-phonon and c!mp the effective ionized-impurity scattering proba
bility. The latter depends on energy E and impurity concentration N{. 

The phonon coupling constants and the band structure are taken from [5]. More pre
cisely, we have so far taken into account the two lowest bands of the model given in [5], thus 
fitting the density of states up to 2.6 eV, much beyond the parabolic band approximation. 
Ionized impurity scattering is treated in the Brooks-Herring formulation. The screening 
length is adjusted so as to match the empirical mobility model [6]. 

Eqs. (2) can be expressed in a more compact form using the transformation of variables 
H = E — q<j>(x), where 4>{x) is the electric potential and J7 the total energy. By defining 
the coefficients of the expansion in the new space 

fi(E,x) = fi(H + q<t>(x),x) = Ti(H,x) (4) 

equations (2) become 

+ 3copg(H)(g(H + Tiojop) [N+TU(JI + ^ ) - NT0(H)] -
d_ 

dx 
gXug 

dx 

-g(H - huop) [N+MII) - N?0(ll - huop)}) = 0 (5, a) 

* = - * £ <5-" 
where the relation g — (87rm*7)/(/i3«3) has been applied. Eq. (5,a) is the continuity 
equation in the (E,x) space, which approximates the original BTE in the (k,a') space. 



3 Numerical method 

Eq. (5,a) is a second order linear difference-differential equation with non-constant coeffi
cients, defined in the two-dimensional domain (II, x) with curvilinear boundaries x = 0, 
x = lmax, and -q4>(x) < II < Emax - q<f>(x), where Emax is the energy at the top of the 
second band. Equilibrium distributions are assumed at the boundaries x = 0 and x = lmax. 
The discretization grid is composed by nodes at constant total energy H, uniformly spaced 
in energy by intervals AH = huop/n, with n integer. A remarkable feature of (5,a) is the 
absence of partial derivatives with respect to H. Therefore, each node of coordinates (H,x) 
is connected along the H direction only with the nodes at (H + hu>op, x) and (H - hu;op, x), 
via the difference operator. The resulting algebraic system is thus composed by n decou
pled subsystems, which can be solved independently with a considerable speed-up of the 
computation. 

4 Results 

The simulated structure is a one-dimensional n-p-n BJT similar to the one investigated 
in [7]. Piecewise uniform impurity concentration has been assumed within the emitter, 
base, collector and subcollector regions (Fig. 1). Two cases have been considered, namely, 
n and p collector regions, which are known to provide qualitatively different electric field 
shapes. Simulations performed with the hydrodynamic version of the code HFIELDS, with 
a base-emitter voltage VBE = 0.97 V and a collector-base voltage VCB = 3 V, provided the 
electric-field profiles of Fig. 2. The base-emitter voltage has been selected such that the 
electron current density turns out to be about 105A/cm2. As bandgap narrowing due to 
heavy doping is neglected in this study, the value of VBE is somewhat overestimated. As 
expected, in the n+-p-n~-n+ case the peak electric field is located at the base-collector 
junction while, in the n+-p-p~-n+ case, the field peaks at the subcollector junction [7]. 

Figs. 3 and 4 compare the electron velocity and normalized energy profiles resulting from 
the HD program and from the solution of the present model. In the HD model mobility 
parameters, saturation velocity, and the energy relaxation time have been calculated by 
means of a best fitting procedure of the average velocity and the mean energy vs. field curves 
obtained with the present approximate solution of the BTE in homogeneous conditions. 
As far as the energy is concerned (Fig. 4), the agreement is fairly good, even if the HD 
model tends to provide slightly lower energies in the rising part of the curve. Also, the 
peak velocities at the base-collector junction are in excellent agreement (Fig. 3). On the 
contrary, the HD model tends to overestimate the electron velocity at the subcollector edge 
of the space charge region, characterized by very large negative gradients of the energy. It 
has been already pointed out in [8] how the HD model can hardly control the velocity in 
such regions. 

The electron velocity profiles are illustrated in Fig. 5. Due to the larger value of the 
electric field at the base-collector junction, the electron peak velocity is larger in the n-
collector transistor. In the depletion region, however, the situation reverses due to the 
different behavior of the electric-field profiles. 

In Fig. 6 the electron energy profiles resulting from the simplified solution of the BTE 
are compared for the two BJT structures. The p-collector transistor exhibits a higher energy 
peak: this is due to the increasing electric field as electrons move toward the subcollector. 
On the other hand, in the n-collector transistor the peak field occurs at the base-collector 
junction, where electrons are still cold. As the electron energy increases, the electric field 
decreases, thus leading to a relatively flat energy over most of the collector space-charge 
region. 
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Fig. 7 shows the electron distribution in the (E,x) space for the n+-p-p~-n+ device. In 
the picture, the numerical solution obtained on the discretization grid has been interpolated 
on a regular and coarser grid. One can clearly see the heating of the tail of the distribution as 
electrons move deeper and deeper into the collector, while quasi-equilibrium distributions 
are observed in the emitter and in the base regions. Two populations seem to coexist 
within the subcollector, as revealed by two different slopes of the distribution for high 
and low energies: hot electrons travelling across the collector space-charge region, and 
majority carriers in quasi-equilibrium conditions. The energy of the tail decays slowly 
toward the contact, where the equilibrium boundary condition is forced. This is likely to 
be an unphysical effect due to the absence in our model of electron-electron interaction, 
which is known to push the distribution toward local equilibrium. 

Two different sections of the distribution of the previous picture are shown in Fig. 8 
(the normalization is such that / fg&E = 1), at two points in the space charge region 
where the average energies are very nearly the same. Section x = 0.15 ̂ m is located in the 
rising part of the electron energy, whereas section x = 0.2 pm is located at the subcollector 
junction, where the average energy is rapidly decreasing. As can be seen, the high-energy 
tail behaves very differently in the two cases. Hence, any impact-ionization model purely 
based on electron temperature could provide unreliable results. 

5 Conclusions 

In this work we have applied the spherical harmonics expansion technique to the BTE 
for obtaining the distribution of electrons in the (E,x) space in a one-dimensional bipolar 
transistor. Our model accounts for acoustic and optical phonon scattering as well as non-
parabolicity effects. The average velocity and energy profiles are in good agreement with the 
results of the hydrodynamic model, while the high-energy shape of the distribution clearly 
shows the limitations of any hot-electron model based directly on the mean energy. We 
realize that a realistic description of the physics of high-energy electrons should also include 
the two upper bands of the model in [5], as well as impact ionization and electron-electron 
scattering. Besides, in order to fully assess the' validity of approximating the distribution 
function with the two lower order harmonics, detailed comparisons with MC simulations 
are required. This will be the object of our future work. So far, we can conclude that the 
method presents very attractive features, considered the amount of information obtainable 
with a computational burden many times smaller than any MC simulation. 
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Fig. 1. Doping profiles of the simulated devices. 
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Fig. 2. Electric field profiles in the simulated devices obtained with the hydrodynamic 
model. 
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Fig. 3. Electron velocity profiles obtained with the hydrodynamic model and with the 
present model for the n+-p-p~-n+ device. 
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Fig. 4. Electron energy profiles normalized to the equilibrium energy E0 — 39 meV obtained 
with the hydrodynamic model and with the present model for the n+-p-p ' -n+ device. 
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Fig. 5. Electron velocity profiles obtained with the present model for both simulated devices. 



212 

K 
g so. 
w 
z 
o « 15. 
E-
O 
Ed 
J 
U 10. 
Q 
W N 
• — i 

J 
< 5. 

s 3 o 
2 o. 

fO+fl / \ 
,••••••/-•••: 

.npn n , / 
A / 

n p p n / / 
/ 

/ / 
/ 

j 1 
1 1 
: 1 
i 

j 1 
: J • / 

;/ 
;/ 
.7 

y 
1 

1 

-

_ 

. 

-

1 I 

0.1 0.2 

DEPTH (urn) 

0.3 

Fig. 6. Electron energy profiles normalized to the equilibrium energy E0 = 39 meV obtained 
with the present model for both simulated devices. 
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Fig. 7. Electron distribution in (E,x) space for the simulated n+-p-p--n+ device. 
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