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Abstract 

A finite element formulation is proposed, based on the local homogenisation of polysilicon 
microstructure; the relevant physical phenomena considered during thermal treatment are the 
diffusion inside crystalline grains and along grain boundaries, segregation at grain boundaries and 
grain growth. This model has been successfully applied to the simulation of a bipolar device. 

Diffusion in polysilicon is a complex phenomenon which can only be accurately modelled 
with a precise analysis of the polysilicon microstructure. A complete model has been 
established1, which accounts for all phenomena involved in thermal annealing of polysilicon. It 
involves the diffusion of dopant inside the crystalline grains and along the grain boundaries, 
coupled with the displacement of grain boundaries due to grain growth. The columnar structure 
of the grains makes difficult the direct implementation of this model in a 2D simulator, 
particularly because the grain boundaries cannot all be perpendicular to the plane of the 
simulation. In the following, it is shown how a local homogenisation of the microstructure 
allows the diffusion in polysilicon and other layers to be simulated accurately, while avoiding 
the solving of a complex moving boundary problem. 

1. Model main principles 

Polysilicon is divided into small columnar crystalline grains separated by grain boundaries. 
The surfaces of the polysilicon layer are also grain boundaries. The dopants can be localised 
inside the crystalline grains, or at the grain boundaries. The grain structure is determined by the 
layer deposition conditions. However, this structure is modified locally by ion implantation, 
which amorphizes part of the polysilicon layer. Moreover, during thermal annealing, the size of 
the grain increases. The model includes the dopant concentration and temperature dependences 
of this grain growth. Dopants diffuse inside the grains according to the same laws as in silicon, 
whereas an enhanced diffusion occurs along the grain boundaries. At the grain boundaries, a 
segregation law links the grain boundary dopant concentration (Cg0, At/cm2) to the grain 
interior dopant concentration (Cg, At/cm3). 

In order to implement this model in the 2D simulator TITAN2- the division of the 
polysilicon layer into crystalline grains is replaced by two smoothly varying quantities: a vector 
function (£) describing the main grain boundary orientation and the local density of grain 
boundaries (pgb) representing the total area of grain boundaries per unit volume3. Only the 
surface of the polysilicon layer and interfaces with other materials are modelled explicitly as 
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grain boundaries. The quantities varying during dopant diffusion simulation are thus pgb and, 
for each dopant, the concentrations Cgb and Cg. The grain growth is modelled by the evolution 
of pgb during the annealing time, which depends on the local dopant concentration. 

The dopants contained in the grain interior are assumed to diffuse isotropically, according 
to the same laws as in silicon. However, a full analysis of the 3D microstructure is necessary to 
determine and integrate the contribution of all grain boundaries (both normal to, and in the plane 
of, the 2D simulation) to the grain boundary diffusion in the plane of simulation. In the case of 
a square-based columnar structure, if £ is in the plane of simulation, the resulting diffusion flux 
will thus be: 

Jgb=-DgbPgb[(VCgb4)? + ^(VCgb.ii)^] (1) 

where Tj is the unit vector perpendicular to q in the simulation plane, D g b the diffusion 
coefficient of the dopant along grain boundaries. 

Additionally to the diffusion fluxes, a segregation velocity has to be considered, coming 
from two different mechanisms: segregation by grain growth, and segregation by dopant 
diffusion. This velocity accounts for the fact that at the delocalised grain boundaries segregation 
conditions are established; it results in a source term coupling the evolution of grain interior and 
grain boundary concentration. At interfacial and surfacial grain boundaries, modelled explicitly, 
segregation is assumed between Cg and Cgb-

2. Discretisation 

2.1 Diffusion equations 

The spatial discretisation of the diffusion equations is finite element based. The elements are 
triangular. In the following, (j)j represents the base function associated to node i; the unknowns 
of the diffusion equations are: 

at each node i inside a layer other than polysilicon: the concentration Cki of each dopant k; 
at each node i inside the polysilicon, for each dopant k: the grain interior concentration Cg^ 

and the "volumic grain boundary concentration": Wgb
ki=Pgbki Cgb1 ;̂ 

At each node i of an interface (including the surface of polysilicon), for each dopant: the 
concentration in one of the materials or the grain interior concentration; the segregation 
conditions allows the determination of all other concentrations. 

For stability purposes, an implicit scheme is used for the time discretisation. However, 
for the sake of simplicity, the time discretisation does not appear in the following equations. 
Consequently, the quantities appearing in the right hand side of the equations below have to be 
considered at time-step n, whereas the derivatives dC/dt must be understood as (Cn-Cn-i)/Atn, 
According to this, the spatial formulation of the diffusion equation is, at each node i inside a 
non-polysilicon layer: 
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J dt Jn 
<j>ida= I JV^ j dQ (2) 

a 
where Ck is the restriction to the considered layer of the function £ C** <])i;7^ is the flux of 
impurity k, which takes into account the concentration dependence of diffusion coefficients, 
and interaction between dopants: in silicon, J^ obeys a law in the form: 

-*k x-, kk'r; k' 

J =-Skp vc 
where D1*' depends on the concentrations of the dopants. 

At a node i inside a polysilicon layer: 

(3) 

k /• 

*4>idQ = I [JgV^ -PgbCqi+q^CCg-^C^^iJdQ 
• ' Q 

(4) 

d W K I ..k _ k k k k k 
- ^ ( j J i d D = I [ JgbV^j + p^qrfqj) (Cg- K C ^ J dQ (5) 
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where qik and q2k are the two components of the segregation velocity, as detailed below. 
At a node at interface, or at the surface of polysilicon, the contribution of dopant diffusion 

inside the different material, and along the interfaces, have to be added: 

(•idr+l ^^dQ = j fv^dQ- j D g ^ i t d r (6) 
J n 

k 

ar ar 
Q 

where T is the polysilicon boundary, Ck represents the total volumic concentration of impurity 
k (that is, in polysilicon, Ck = Wgbk + Cg

k ),V/i the volumic diffusion flux (in polysilicon, 
1k=7gbk + ?gk).Ck is discontinuous at the interface, according to the segregation condition. 
The boundary integral in the right hand side accounts for the diffusion of Cgb along the 
interface. 

Boundary conditions are in general homogeneous Neuman; however, Dirichlet conditions, 
or also non-homogeneous Neuman conditions can be considered in some cases (predeposition 
of dopant, oxide growth). They result classically either in the suppression of some degrees of 
freedom, or in boundary integrals not detailed here. 

2.2 Grain growth 

The grain growth follows equation 7: 
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^ i = K ( ( C l L g ^ § - ) / L (7) 

where Lg is the grain diameter, inversely proportional to pgb, Kg is the rate of grain growth 
which has a dependence on the grain doping concentration Cg> on the relative size of Lg to the 
layer thickness Tpoiy and also on the polysilicon layer curvature; this equation also determines 
the value of the segregation velocity component qik: 

k 
k 1 dL„ (8) 

4 a dt 

where a is a dimensionless coefficient whose value lies between 1 and 2 depending on the 
exact dynamics of the grain growth4. This models the transport and segregation of dopant by a 
moving grain boundary. 

The second component of the segregation velocity models the diffusion of dopant from 
grain interior to grain boundary: 

k D(Cg) 
q 2 = _ 1 _ I _ (9) 

2 L g 

where D is the grain diffusion coefficient. Both qi and q2 are dopant dependent. 

2.3 Solving 

At each time step, the grain growth (equation 7) is first solved at each node; the grain 
boundary density pgb' and the segregation velocities (qiki, q2ki) are determined, according to 
equations 8 and 9. Then, the set of diffusion equations (2,4,5,6), added to the segregation 
conditions at interfaces, is considered. For stability purposes, an implicit scheme is used. 

The first approach to solving the diffusion equations employed a SOR method, where the 
diffusion coefficients were recomputed at each iteration. This method has the advantage of a 
very poor memory requirement, and is quite efficient in the case of classical diffusion 
equations, with a mesh size adapted to the diffusion coefficients. However, in polysilicon, the 
discrepancy between the diffusion coefficients in grain interior and in grain boundaries, added 
to the necessity of a thin mesh near the interfaces, force the mesh size to be very small, when 
compared to the diffusion coefficient in grain boundaries. The SOR method becomes thus very 
inefficient (more than 100 iterations at each time-step). 

In a more recent approach, the non-linearity resulting from the dopant dependency of the 
diffusion coefficients (in silicon and in polysilicon grains) can now be solved either by SOR, or 
by successive Newton iterations, where the linear solver is conjugate gradient. Of course the 
memory requirements are much higher in the latter case, especially because the number of 
coupled unknowns at each node of the polysilicon is twice the number of dopants. In a realistic 
problem like the one presented below, with 3 dopants diffusing simultaneously and around 
2000 nodes, the size of the matrix is quite big. However, as far as CPU time and results 
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accuracy are concerned, the Newton algorithm brings a comfortable gain in the case of 
polysilicon. 

3. Application 

The program has been applied to the simulation of a bipolar transistor. The emitter and base 
contact regions are formed by out-diffusion from polysilicon layers. Figure 1 shows the final 
geometry and dopant distribution as simulated by TITAN-POLY. Figure 2 shows the grain 
direction at each node of the polysilicon layers. Figure 3 shows the mesh used for the 
simulation. Figure 4 compares the ID vertical simulated profile through the emitter base with 
measured SIMS profiles. The total CPU cost of this simulation is around 15mn on a 
CONVEX 220. 

Conclusion 

With the application of local homogenisation of the polysilicon microstructure, accurate 
simulation of dopant diffusion and grain growth in non planar polysilicon layers is possible in a 
2D process simulator. An efficient numerical implementation, through finite element 
discretisation of the coupled diffusion equations, has been presented. The application of this 
model to the simulation of an advanced bipolar transistor has been demonstrated. The general 
approach presented here has potential application to diffusion problems in other polycrystalline 
materials. 

Acknowledgements 
This work was partly funded by the European Community ESPRIT-2197 Project STORM, 

and by the GEC-Plessey Semiconductors company. The authors acknowledge the support of 
the GEC-Marconi and CNET companies. 

1 C. Hill, S. K. Jones, Mat Res Soc Symp Proc 182 (129-140) 1990 
2A. G6rodolle, C. Corbex, A. Poncct, T. P6dron, S. Martin, in W. Crans, editor, "Software Tools for 

Process, Device and Circuit Modelling", Boole Press, July 1989. 
3 S. K. Jones and A. G6rodolle, proc. NASECODE VII (ed J.J.H.Miller), p31, Boole Press,1991 
4 A. G. O'Neill, C. Hill, J. King, C. Please, J.Appl.Phys. 64 (1) 167 (1988) 



386 

Figure 1: The geometry and dopant contours in the active region of a 1 |im double polysilicon 
bipolar device simulated by TITAN-POLY. The base contact was formed by boron out-
diffusion from the p-poly layer, the emitter by arsenic out-diffusion from the implanted n-
poly layer during an RTA at 1100 C. 
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Figure 2: The grain direction £ considered at each node of the polysilicon layers, in the device 
shown in Figure 1. 



Figure3: The mesh used for the simulation of the bipolar transistor shown in Figure 1. 
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Figure 4: The vertical arsenic and boron simulated profiles dirough the emitter-base region of 
the device shown in Figure 1 are compared to experimental SIMS data. The boron was 
implanted through dielectric screening layers. 


