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Abstract 

We propose a discretization scheme which implements the box integration / Scharfetter-
Gummel method for a new Energy Transport model. The discretization treats consistently 
the current and energy flux and avoids typical problems encountered in many hydrodynamic 
formulations. Simulation results are satisfactory from both the numerical and physical points 
of view. 

1 Introduction 

I n recent years, much effort [l]-[5] has focused on extending the Scharfetter-Gummel (S-G) 
scheme [6], which results in excellent numerical stability and retains reasonable accuracy in 
Drift-Diffusion simulation, to the case including the energy transport equation (e.g. hydro-
d y n a m i c (HD) models). However, these discretization methods are not truly self-consistent 
i n terms of current and energy flux, since the assumptions used in discretizing the local en­
e r g y transport equations, are different from those in the local current equations. In addition, 
t h e resulting formulations of the energy balance equation pose considerable difficulties in the 
numer ica l implementation. 

We discuss here the discretization of a novel Energy Transport (ET) model [7] briefly de­
scr ibed in Sec. II, which avoids the direct use of the phenomenological Wiedmann-Franz law 
i n conventional HD models and employs an elegant parallel between the expressions for the 
cu r ren t and the energy flux. The self-consistent discretization scheme based on the ET model 
is a natural extension of the S-G scheme and has been implemented in a 2-D simulator. To 
demons t r a t e the features of this model, we compare our numerical results with HD simulations, 
fo r the well known case of Si n+ — n — n+ test structures, 

2 Physical Model 

T h e Oth and 2nd order moments of the BTE give the carrier continuity and energy balance 
equa t ions : 

V J = G-R; (1) 
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BE 
V - S = F - J - n < — 

at 

> (2) 
coll 

where F is the electric field, J = -qn < v > = -qjdskvf and S = n < 22v > = Jd3kEvf. 
Here, q is the elementary charge, n is the carrier concentration, v is the carrier velocity, k is 
the crystal momentum, / is the distribution function and E is the carrier energy. To derive J 
and S from the B T E as functionals of n and < E > , the distribution function / is decomposed 
as / = /o + / i with /o and fx as even and odd functions, respectively. We further use the 
microscopic relaxation time approximation for the collision term, (df/dt)cou — —/ i / r , assuming 
/ i < /o (as given for instance by Strat ton [8]) and then obtain 

h = ^ V k / o - rvVrfo • (3) 

Substitution of (3) into the expressions for J and S will yield 

3 = -q f d3kvh = g (n£F + V • (nD) ; (4) 

' d3k Evh = ~nfiEF - V • (nDE) , (5) 
/ • 

which resemble the perturbed BTE solution approach in [9]. The transport coefficients ft, D, fiE, 
and DE, all of which we can model as functions of < E > , are tensors and can be determined 
from the knowledge of f0. The divergence of tensor in (4) and (5) means to take the divergence 
of each row of the tensor as a vector element. The following approximations for /o(k) and the 
energy E(k) are used to obtain a complete set of transport coefficients: 

1) nonparabolic bands: h2k2/2m* - E{\ + aE); 
2) non-Maxwellian effects: fQ = (1 + fE/kBTe)fm(E), where fm(E) is the Maxwellian 

distribution at an elevated temperature Te and 7 is the non-Maxwellian parameter; 
3) field-induced anisotropy [10]: / 0 ( k ) = \ [fm(E(k + k 0)) + fm(E(k - k0))] . 

It is very important to notice that in this approach all of the necessary transport parameters can 
be determined, for instance, from bulk Monte Carlo simulations and that the Wiedmann-Franz 
law for heat flow is never invoked, as it is necessary in the conventional hydrodynamic method. 

3 Discretization Scheme 

For Si, the correction from the field-induced anisotropy is generally not important [10]. Wi th 
assumptions 1) and 2) above, p., X>, fiE, and DE will degenerate to scalar forms and the 
modified Einstein relations are valid between ft and D and between fiE and DE 

kBTm 
D = /*; 6) 

q 

DE = kBTrn^E ( ? ) 

? 

where Tm = (1 + l)Te is an approximation for the carrier temperature with the relation to the 

mean carrier energy as 

<E>^ (l + ^akBTm)-kBTm. (8) 
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Furthermore, fi and fiE are related by 

V? = ( f - P ) ( l - ^Y^^BTmH = CekBTmii (9) 

where p depends on the dominant scattering mechanism and is derived from the power law 
of the microscopic relaxation time, f (k) ~ r{E) oc E~p. The parameter p is constant for 
a Maxwellian-like distribution and is a slowly varying function of the mean carrier energy 
for a non-Maxwellian distribution, which ranges from 0.5 to 1.0 according to our bulk Monte 
Carlo simulations. Substituting (6), (7) and (9) into (4) and (5), we can write the normalized 
expressions for J and S as 

J = -NVrp+V(NT); (10) 

S = -NTVip + V(NT2) (11) 

where N = nfi, T is the carrier temperature normalized to the lattice temperature To, and tp 
is the electrical potential. The similarity of the functional expressions in (10) and (11) serves 
a s the basis for our extended Scharfetter-Gummel discretization for both continuity and energy 
balance equations. In order to perform the standard box integration around each discretization 
node, we need to know J and S along each grid line. On the mesh line connecting the nodes i 
and j , (10) and (11) can be expressed as: 

where / is a coordinate denned on the mesh line. By using the following assumptions 
1) Ji and Si are constants 
2) (l/T)(dip/dl) is a constant 

we can solve both (12) and (13), and obtain 

* = T-7^t-^~UilNiTj ~ e^NiTi) ; (14) Lij sinh(u l j ; 

* " ^ s f e ^ " ' 1 ? " '",N'T'} (15) 

where Lij is the distance between nodes i and j , and Uij = (x/jj — ipi)/2 <T>, T is normally a 
slowly-varying function of space, therefore the assumption of constant (l/T)(dip/dl) is justified. 
For instance, the approximation < T' > = (T; + Tj)/2 can be reasonable in practice. Moreover, 
t h e joule heating term in (2), F • J , can be included in the divergence operator by F • J = 
— V • (ipJ) + ^V - J . If we define H = S + tpj with the energy relaxation time approximation, 
(2) will become 

V • H = V • (S + </J) = rf> • {G - R) - n<E>~E° (16) 

where EQ — 3&BTO/2 and re is the energy relaxation time. The final normalized expression used 
i n the fluxes through the sides of the finite boxes for the energy balance equation can be written 
as 

Hi = -Ce§i + i>Ji 
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4 Simulation Results 

The new discretization method has been implemented in a 2-D device simulator based on the 
improved ET model using the full Newton method. Numerical tests have been carried out for 
a Si n+ -n-n+ structure with a 0.4 /xm n region (see Fig. 1 and 2). Here the mobility model 
is chosen as fJ,(Tm) - n0T0/Tm, where no is the low-field mobility. The energy relaxation time 
r£ is presently chosen as a constant. In both figures we vary p for illustration of the typical 
spurious velocity overshoot problem in the conventional HD models [11, 12]. In our formulation, 
the spurious peak is not only much reduced but also rather insensitive to the selection of p in 
contrary to the usual HD models. However, the accurate estimation of the velocity in the n 
region greatly depends on p. This indicates that p should not be chosen randomly to eliminate 
the spurious peak as in many HD models. We can alternatively use p(Tm), extracted from 
the bulk MC results, in a more sophisticated model. The improved ET model appears very 
stable numerically. Quadratic convergence of the full Newton Scheme has been observed for 
every case with a good initial guess. We would like to point out again that non-parabolicity 
effects are already included in the formulation of the ET model. For GaAs device modeling, 
the field-induced anisotropy effect can also be included with little modification. 
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Figure 1: Profiles of electron velocity in a Si n + - n - n + structure with a 0.4 pm n region and 
doping levels n + = 5xl01 7cm - 3 , n = 2i l0 1 5 cm - 3 , with p = 0.5, 1.0, 1.5 and 2.0. 
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Figure 2: Distribution of the electron temperature for the structure in Fig. 1. 


