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Introduction 

Our purpose is to model current flow through 

n+-GaAs / i-AlxGai_xAs / n+-GaAs single-barrier tunneling structures. We 

calculate current as a function of voltage, I(V), and conductivity at low 

voltage as a function of temperature, G(T), and compare the results with those 

measured in several such structures. We have treated structures with n-doped 

injection layers, where the current is mainly carried by electrons. 

Description of the Physical Model 

We assume that the current flowing from one side (z=0) of the structure to the 

other (z=L) is made up by a tunneling plus a thermionic emission current and 

thus1 is given by : 

m'kBT r I 1 + e x P i t.r ) \ 
J = Qn ,,.•, dE 7 ( £ ) In ( 1 ) 

mox(f r(0),££(I)) \ ' 6 X P [ kBT ) J 

where z is the space coordinate perpendicular to the layer interfaces. T(E) is 

the transmission coefficient through the structure for a plane wave with 

energy E. In order to calculate T(E), it is necessary to know the shape of the 

potential Ec(z) seen by the electrons, which is governed by Poisson's equation. 

We solve this equation self-consistently for the following model of the charge 

distribution ; The hole and ionized donor and acceptor densities are evaluated 

according to Fermi-Dirac statistics and assuming a continuous density of states 

for the hole density. The electron density (n) is calculated from the electronic 

wavefunctions. Using the envelope function model, and taking into account 

that our structures are homogeneous in the x-y plane, we have : 

1 L. Esaki, R. Tsu, IBM J.Res.Dcv. U, 61 (1970) 
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( 2 ) 
!"(2./:") are envelope functions and obey the following Schroedinger equation : 

ft2 d f I dyA 

2 dz\m* dz J 
Since we deal with a structure open at its boundaries, equation (3) is not an 

eigenvalue problem. Elections flow into the structure with any energy E which 

they may have in the material adjacent to the structure. The wavefunctions 

U\Z.E) are assumed to be plane waves when entering the structure, and then 

evolve according to equation (3). We have normalized the wavefunctions such 

that the resulting total electron density in the structure exactly compensates 

the net positive charge. Once the solution has converged, the quantum 

mechanical electron density at the borders always ends up to be equal to the 

semiclassical value there, provided the borders are chosen sufficiently far 

away from the barrier. Yet, when normalizing such that the quantum 

mechanical electron density at the borders equals the semiclassical electron 

density at the borders, convergence cannot always be achieved. 

In order to take into account inelastic scattering, one might still calculate the 

envelope functions from (3), but allow E to be a function of z which changes 

somewhat randomly over a mean-free-path distance by an amount typical for 

phonon or impurity scattering. Our way to treat scattering has been proposed 

by Rajakarunayake el a!.2 and consists in damping the Friedel oscillations 

appearing in the electron density in the electrode layers. When the oscillations 

are completely damped, then the so obtained electron density in the electrodes 

is identical to the semiclassical one. 

When a bias is applied to the structure, then Ef becomes a function of z. From 

semiclassical calculations where we have solved self-consistently Poisson's 

equation together with the electron and hole density continuity equations, we 

know that the quasi-Fermi levels are almost constant in the n-doped layers 

and vary approximately linearly in the intrinsic layer. We therefore assume 

such a form for Ef<z). 

2 Y, Rajakarunanayakc, T.L, McGill, J, Vac, Sci. Technol. B5, 1288 (1987) 
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Finally, we also have calculated the I(V) and G(T) characteristics using the 

semiclassical expression for the electron density. Results from such a 

calculation will be called "semiclassical (SC)" as opposed to those obtained with 

the above model for the electron density which we then shall call "quantum 

mechanical (QM)", 

Calculation procedure 

We start with the potential obtained by a semiclassical calculation at zero bias. 

Then we iterate the solution of Poisson's equation until the maximal variation 

of the potential between two successive iterations is less than 10-4 V. The 

iteration scheme is based on an undamped Newton method employing an 

approximate Jacobian matrix as proposed by Laux s . Schroedinger's equation is 

solved with a transfer matrix method i. 

When convergence has been attained, we impose a first step of applied bias by 

superimposing on the potential obtained at the last step a potential which is 

flat in the cladding layers and varies linearly by the applied bias in the 

barrier. The same is done for E({z). Then we iterate until again convergence is 

achieved. When working with the semiclassical electron density, we solve 

Poisson's equation in the subsequent iterations with Dirichlet boundary 

conditions. When working with the quantum mechanical electron density, 

Neumann boundary conditions implying a zero electric field at the boundaries 

must be used. It turns out that with Neumann boundary conditions, the 

potential difference due to the applied bias is maintained, but the potential is 

shifted by a constant value throughout the structure. Compensating for this 

shift after each solution of Poisson's equation then leads to convergence. 

Results 

Some examples of calculated and measured results are shown in figures 1 to 6. 

The notations are the following : x is the AlAs mole fraction in the barrier 

layer, LB the barrier width and Nrj the donor doping density in the electrode 

layers. 

Fig.l : electron density in an n-i-n single barrier structure calculated 

semiclassically (solid line), according to (2) (dashed line), and according to (2) 

modified as proposed in reference 2 with a. =300 A (dotted line) 

3 S. Laux, F. Stern, J. Appl. Phys. 49, 91 (1986) 

4 Y. Ando, T. Itoh, J, Appl. Phys. 61, 1497 (1987) 
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Fig.2 : conduction band diagram under an applied bias of 16 mV, calculated 

with the SC electron density (solid line) and the QM electron density (dashed 

line) for a structure with a 500 A wide barrier having an Al concentration of 

4%, the doping density in the cladding layers being equal to 1017 cm-3. 

Fig.3 : tunneling current obtained for the structure of fig.2 when calculating 

the conduction band diagram with the SC electron density (solid line) or the 

QM electron density (dashed line) 

Fig.4 : calculated and measured I(V) characteristics; the calculations having 

been performed with the parameters indicated in the figure and the SC 

electron density; the nominal parameter values of the structure are x=0.04, 

LB=500 A, ND=8*10ie cm-3. 

Fig.5 : calculated and measured 1(V) characteristics, and Fig.6 : calculated and 

measured G(T) characteristics; the calculations have been performed with the 

parameters indicated in the figure and the QM electron density; the nominal 

parameter values of the structure being the same as in Fig.4, 

Conclusions 

We have compared the calculated and measured I(V) and G(T) characteristics 

for single barrier structures where the doping leve! in the injection layers is 

higher than 5*1016 cm-3 and where the barrier height is varied between 30 

and 100 meV and the barrier width varied between 150 and 600 A. With both 

the quantum mechanical electron density and the semiclassical electron density, 

very good agreement between measured and calculated data has been obtained, 

with a choice of structural parameters whose values are within the uncertainty 

limits (i.e. 10%) of the nominal growth values. However, an uncertainty even 

smaller would be necessary in order to decide which model is closer to reality. 

Our numerical method has proven reliable also in the case of higher or lower 

and thicker or thinner barriers as well as many-barrier structures, but no 

experimental data have been available to us for comparison. 
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