SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 3
Edited by G. Baccarani, M. Rudan - Bologna (1taly) September 26-28, 1988 - Tecnoprint

MIXED FINITE ELEMENT APPROXIMATION OF THE
STATIONARY SEMICONDUCTOR CONTINUITY EQUATIONS

Song Wang and Changhui Wu
Numerical Analysis Group, Trinity College, Dublin 2, Ireland

Abstract: In this paper we discuss two discretisation methods for the stationary
semiconductor continuity equations based on the mixed finite clement approach. Both
of them can be regarded as extensions of the wellknown Scharfetter—-Gummel scheme
to two dimensions. The existence and uniqueness of the solution are presented and
crror cstimates are given. The associated linear systems are perturbations of those
obtained from the conventional box method. We propose a method for the evaluation
of the terminal currents which we show 1o be convergent and conservative.

1. Introduction

The stationary behaviour of semiconductor devices is governed by a set of
nonlinear elliptic partial differential equations. This includes a nonlinear
Poisson equation and two nonlinear continuity equations. Using Gummel’s
method [5] we can decouple the nonlinear elliptic system so that at each
step we solve an equation of the form

-V {a{z)Vu) + G(z,u) = F(z) in 0 (1.1)

with the boundary conditions u|sn, = v(z) and Vu - nlsq, = 0, where
0 c R™ (m=1,23),00=080pUd0y is the boundary of (1, n
denotes the unit normal vector on d(1, a € C(ﬁ) and a(z) > ap > 0.

In the following we consider only the case m = 2 and we take G(z,u) =
0, which corresponds to the two continuity equations.

As in [8], introducing a new variable f = aVu, we get a first order
system of PDE’s in the variables [u,f]. We consider only homogeneous
Dirichlet boundary conditions. For the inhomogeneous case we can subtract
a special function satisfying the Dirichlet boundary condition and change the
problem into a homogeneous one. The corresponding variational problem is
Problem 1.1: Find a pair [u,f] € V = H}(1) x L2(1) such that for all

v,g] €V

(Vu,g) — (a”'f,g) =0 (1.2a)
(f,Vv) = (F,v) (1.2b)
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Here HL(Q) = {v € H}Q) : v|sa, = 0}, L2(N) = (L3(N))? and
(-,-) indicates the inner product on L2(Q2) or L?(01). We comment that the
solution to Problem 1.1 exists and is unique (cf.[10]).

To discuss the finite element approximation to the solution of Problem

1.1 we first define a partition of (1.

Let T}, denote a triangulation of the region {1 with each triangle ¢t of
diameter less than or equal to h. Assume that {T}};, is regular, i.e. there
is a constant ¢y > 0 such that

max — <o; Yh

tET Py
where h; and p, denocte the diameters and the incircle of ¢ respectively. This
is eqivalent to saying that the set of angles of ¢t € T3, has a positive lower
bound.

Let X = {z;})" denote the set of vertices of T, and E = {e;}V'®
the set of all edges of 73,. Let NV denote the number of nodes in X not on
90 p and M the number of edges in £ not on 9{1. We say that T3, is a
Delaunay triangulation if for any ¢t € T, the circumcircle of ¢ contains no
other vertices in X. The Dirichlet tessellation {D;}¥" is defined by

Di=A{z: |z -zl <|lz—=jl,z; € X,5 #1}
for all z; € X.

2. The Galerkin Approximation

In this section we discuss the mixed finite element method partly based on
Brezzi ¢t al [2]. Introducing finite dimensional subspaces H;,, L;, such that
Vi. = H), x L, C V, we define the following discrete problem
Problem 2.1: Find |uy,,1},] € Vi, such that for all [v,,g,] € V,

(Vun,gn) = (@™ 'y, g1) =0 (2.1a)
(fhavvh) = (F, 1);,,) (216)

We choose Hj, = span{¢;}}’, where ¢; is the standard piccewise linear
basis function associated with z;. For the construction of L; we choose

L, ={qeL?Q):q|; € (R)*Vt € T}.}

where Py is the space of zero—order polynomials. Obviously L, is the space

of vector—valued piecewise constants.
Corresponding to this choice of subspaces we have the following the-

orem:
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Theorem 2.1. Problem 2.1 has a unique solution.

The proof of the theorem is trivial since VHy, = {Vv :v € H,} C Ly,
The inf-sup condition holds trivially in this case [1, 4 (p.134)].
Introducing the piecewise constant a3 * such that

- 1
aAl]t = m /ia—ldz vte T, (2.2)
we obtain from (2.1a)
1
fh = '__Tvuh (23)
ay

where, and hereafter, || denotes the measure or absolute value. Substituting
(2.3) into (2.1b), we get a problem as follows
Problem 2.2: Find uy € Hy, such that for all v;, € Hy,

(%Vuh, V) = (F,vg) (2.4)
@y
Problem 2.2 is similar to the standard conforming finite element dis-
cretisation but with the harmonic average approximation to the coefficient
function a{z) in each element, as in the one~dimensional Scharfetter-Gummel
scheme [11].
To obtain an error estimate for the discrete solution of Problem 2.2,
we first define a norm on L?(Q) by || - ] = (a™1+,-). We then have the
following error estimate

Theorem 2.2. Ler [u,f] and [u;L,f;J~be the solutions of Problem 1.1 and
Problem 2.1 respectively. Let £y and £ be the approximations of T by

fI S Lha (f - f]sg) = 0: Vg S Lh

where wr is the piecewise linear interpolant of u. Then

£ = fulla < 2(If — £l + |If = £]la)

Proof. Seec [2]. O

If we let u),, = Z‘;’ u;¢; and vy, = ¢;, then (2.4) reduces to the
following linear system.

S ui (V6 Ve) = (Féy)  j=1,2,...,N.  (2.)

{i==1 a.A



The linear system (2.5) can be reduced again using the following
lemma. Before giving the lemma we define some notation. For any e;x € E
which is the edge connecting z,; and zy, let w}}c) and wﬁ) denote the dis-
tances from the circumcentres of the two triangles sharing e, to the mid-
point of e, respectively. Here wgc) ( = 1,2) is negative if the circumcentre
lies outside of the triangle in question. The restrictions of a function & on
the two triangles sharing e i are denoted respectively bg.i) and bﬁ), Let
I; = {k:z;z, € E} denote the index set of all neighbour nodes of z;.

Lemma 2.2, Let b be a function which takes constant value on each triangle
t € Th. Then for all v = }:f’ v;¢; € Hy, we have

bVu, Ve, = ) (1) b(z) (2)y V5 — Vk .
(bVv,V4;) k;(b + Jk)-—,ejki (2.6)

Proof. See Ikeda (1983). a
Applying Lemma 3.2 to (2.5) we obtain

U;, — U .
Z (aJk) i + a.g}?c)w;i))_:)'?lcl_k =(F¢;) 7=412,...,N (2.7)
kel J

1

where a'%) and a!?) are respectively the restrictions of 1/a" on the two

7k 7k
triangles sharing e,x. From (2.2) we know that (1/a3')|; is an average
value of a on t. We thus perturb a k) and a( ) and apply the mass lumping
method based on the circumcentric domain (cf [6]) to the right-hand side

of (2.7} so that (2.7) reduces to

1 U; — ug
>yt —E = F(2)ID;] (2:8)
keI, %k ik
where wy), = 1) + w i) 1s the distance between the two circumcentres

of the two rrmnr7 es 9harmg ejk, D; is the Dirichlet tesselation associate
with z; and ¢, = Wf . @~ ds is an average value of a on ey, The
lincar system (2.8) commdes with that obtained from the conventional box
scheme (cf. [3,7,9]). If T}, is a Delaunay triangulation, the weights w,i’s
are nonnegative. In this case the system matrix of (2.8) is a Stieltjes matrix.

3. The Petrov—Galerkin Approximation

In this section we present a Pewov-Galerkin finite element method for Prob-
lem 1.1 We first define two other meshes associated with T7,.
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With each z; € X we associate a region {1(z;) consisting of all the
triangles ¢ € T, with the common vertix z; and an open region b(z;) C
01(z;) constructed as follows: for each t C 0z;), choose a point p € ¢
arbitrarily and connect it to the two midpoints of the two edges of ¢ sharing
z;, as show in Fig.3.1. For the sake of convenience, we sometimes denote
b(z;) simply by b. The set of all such b(z;) is denoted by By which is a
dual mesh of T},

RS

JASEN

Fig.3.1: b(x) c Q(x), Q(e)
With each edge e; € E we also associate an open region {1(e;) by
connecting the two end-nodes of e; with the two chosen points in the two
triangles sharing e; generated during the construction of By, shown in
Fig.3.1 by dashed lines. This mesh is denoted Br. We comment that Bg
is determined uniquely by By and vice versa and By divides eacht € T
into three parts t;,1,15. We assume that Bp is regular in the sense that
there is a positive constant o, such that for any 7,7 € {1,2,3},7 # J
: }ti] '*']tj] > o

min

NPT 2 (3.1a)

This is equivalent to fact that for the chosen p € t, the minimal distance
between p and the vertices of ¢ has a lower positive bound. The regularity
of B implies that there is a positive constant o5 such that

. [b(zi)]
e iam)] = % (3.18)

For the three meshes T),, By, Br, we construct three corresponding
finite-dimensional spaces U, C HE(Q),V,, C L?*(N1) and L, C L3(N) as
follows.

Let {¢:}Y¥ be the conventional piecewise linear basis functions for
T;,,. We choose U;L = span{géi}f".

To construct V},, we define a set of basis functions corresponding to
the mesh By by

_ 1 IEZ){I;) .
’l,bl—{o x¢b($i) 1—1,2,...,N
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i.e. for each 7, v, is piecewise constant on {1. We then choose V;, =

span{;} V.
Fori:=1,2,...,Ng, define

e IEEQ(G{)
4= {o z ¢ Ofe;)

where e; is the unit tangential vector long edge e;. Obviously we have
(ai,q;) = 65|02 (e;)|, where &;; is the Kronecker notation. We choose
L, = span{q:}M.

With these subspaces. we define the following discrete problem.
Problem 3.1: Find a pair [u,,f,] € U, x Ly, such that for all v, q,] €
Vi x Ly

(V‘U,},,, Cih) - (G/—lfhaqh) =0 (32)
- Z / £, nayyovnleds = (F,vy) (8.3)
bED N ab

where ~¢ denotes the conventional trace operator, vy,|;, denotes the restriction
of vy, to b and ny, the outward unit normal vector along 0b. We comment
that the lefi—hand side of (3.3) is meaningful because f;, - ny, is integrable
on ob for all f;, € L;,. It is a bilinear form on L;, x V}, as follows

a(fn,v,) = Z /fh Vv, dz — Z/ i -ngpv0vn|pds (3.4)

beDy LEBN

The first term on the right—hand side of (3.4) vanishes when v;, € V;,. For
simplicity, we write vovy, |, in the integrand of (3.3} as v, hereafter.

The existence and uniqueness of the solution to Problem 3.1 is con-
tained in the following theorem.

Theorem 3.1. Assume (3.1a-b) are satisfied. The Problem 3.1 has a unique
solution for the choice of L, U, and V),.

Proof. Sece [12]. O

1\ v

Let f;, = Z;Ail fiGi v = Z.—Luaﬁf‘w here {f’i} {u p are two

scts of constants. Substituting these into (3.2) and letting q;, = q; (j =
1,..., M), we get
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This has the following solution

1 u o — U
fi= -~ J 7
a; le;]

where aJTl = m fn(cj) a~ldz and u;,u;» are as shown in Fig.3.2.

up
P e
uj 2, ok ob(xj)
- Xj / . Xk
Xp
Fig.3.2 W
Fig.3.3
We thus have
M 1 upp —ugy
f, = — 2y, 3.5
S T (5:3)

Substituting (3.5) into (3.3) and letting v;, = ¥; (j = 1,2,...,N), we
obtain

M 1 U U
12 3l
Z / G Days,)ds = () (3.6)
1-_1 181 3b(x;)

Recalling the definitions of {q;}? and By, and using the subscripts in
Fig.3.3 we finally obtain

Z 1 Uy — Uk 2]0(6]}@)] — (F, wj) ] =1,2,....N (37)

keI, aje ekl lesl

where I; is the index set of all neighbour nodes of z; as defined in the
previous section. In the above we have made use of the fact that the line
integral of q; - Mai(s;) I8 independent of path in Q(e;) and chosen the path
shown in Fig.3.3 by heavy lines.

Let [u, f] be the solution of Problem 1.1. Let uy be the piecewise linear
interpolant of v and f; = ;ﬁ—,vu;, where o' is defined in (2.2). Then

A .
we have the the following theorem for the convergence of the approximate
solution uy,.
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Theorem 3.2. Assume that (3.1a=b) hold. If T}, is a Delaunay riangulation
and By is the corresponding Dirichlet tessellation, then there is a constant
C > 0, independent of h such that

Jur = wals < A = filo+ [ ) (2.10)

where ag is the positive lower bound of a defined in Section 1.

The proof of this theorem will be published elsewhere. We comment
that the approximate flux f, does not converge to f as A — 0 because of
the choice of L.

When T}, is a Delaunay triangulation and By is the corresponding
Dirichlet tessellation, (3.7) reduces to the conventional box scheme (cf.
[3,7,9]) if we perturb a;.'kl in (3.7) such that a;kl =L fc,k a~ds.

Cik

4, Evaluation of the Terminal Currents

In this section we present a method for the evaluation of terminal currents,
The approximate terminal currents are shown to be convergent and conser-
vative. Notation in the section is the same as that in section 3.

Assume 3f}p consists of finite number of disjoint segments, each of
which is physically an ohmic contact. At this stage df1p is viewed as the
set of all ohmic contacts. For any C € 8f1p, let {z£}¥¢ denote the set of
nodes on C. Let ¢ be a function defined as

N C
¢C(x) = {1 z € Ui;clb(z'i ) (41)
0 otherwise

Multiplying (1.1) by 4 and integrating by parts on each box we have
—/f-nds— Z/ Yol -nds = (F,9¢)
c veDy J 20\aeNC)
We thus have the outflow current through C as

ch/f~nds=— Z

/ vef -nds — (Fe)  (4.2)
vEDBN I\ (3N C)

The approximate outflow current through C is then defined as

Jh=— Z / Yefl, -nds — (F,¢) (4.2)
Ve O (anC)
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Using (4.1) and (3.5) we finally obtain

& 1 200(ei)| ui — uy
IE=S1 Y — —/b{xi)Fdz] (4.4)

i=1 jEI‘-,mJeC aij le“jl 1eijl
Here we have used the same arguement as that for the derivation of (3.7).
The convergence and conservation of the approximate terminal currents
are contained in the following theorem.

Theorem 4.1. Assume Jg and J’Cl are defined by (4.2) and (4.3) and uy, is
the solution to Problem 3.1. Let £ be a piccewise constant vector—-valued
function and a1_31 a piecewise constant functions such that for all e; € E

- 1
flage) = 77 fds, 9b; = N(e;) N (Upepydb)
]361] ab;

o= e [ e
ap lﬂ(gi)— ]Q(e;)] n(ce)a “

Then there is a constant o > 0, independent of h, such that

1
o = J&| < oflf = = Vusnllo
ap

Furthermore

h _
> gk = /ﬂFd:c

Cedlip

The proof will be published elsewhere.

5. Conclusion

In this paper we have discussed two discretisation methods for the station-
ary semiconductor continuity equatins. One is based on the Galerkin mixed
finite element appraoch and the other 1s based on the Petrov—Galerkin mixed
finite element appraoch. The existence and unigeness of the solution for both
methods were presented and error estimates were also given. Both meth-
ods can be regarded as extensions of the well-known Scharfetter-Gummel
scheme [11] to two dimensions. The resulting linear systems are perturba-
tions of the conventional box scheme [3,7,9]. We also presented a method
for the evaluation of the terminal currents and showed that the approximate
terminal currents are convergent and conservative.
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