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SUMMARY 

In this paper a new mixed finite element method for device 
modelling is presented. This discretisation satisfies the 
usual requirements of current conservation and fitting for the 
singularly perturbed continuity equation. It is defined for 
the n-dimensional problem with non-zero recombination and 
reduces to the Scharfetter-Gummel scheme for one dimension and 
zero recombination. For recombination unequal to zero a 
'stability' problem is encountered with the 'usual' mixed 
finite element method. For this problem a solution is 
presented also in this paper. The solution, in principle, is 
the lumping of the mass matrices involved. 

INTRODUCTION 

The discretisation methods most used for solving the device 
modelling equations are some ad hoc generalisation of the so-
called Scharfetter-Gummel scheme (see, for example, Polak et 
al., 1987). This scheme is fully accounted for in the one 
dimensional case with zero recombination. 
A recent publication by F. Brezzi (1987) shows that a certain 
mixed finite element method reduces to the Scharfetter-Gummel 
method in the one dimensional zero recombination case. This 
provides a mathematically well accounted for generalisation of 
the Scharfetter-Gummel scheme. It thereby satisfies the usual 
criteria such as current conservation and, moreover, allows 
(as usual with FEM) a consistent way of interpolating the 
different quantities involved. However, Brezzi (1987) only 
treats the zero recombination case. For recombination unequal 
to zero, or simpler, in applying the method to a problem of 
the form Au=u, an instability is met. In this paper we analyse 
this problem for the one dimensional case. We also describe 
the solution for the two dimensional rectangular case and give 
an example problem. This example shows essentially more 
accurate currents than achieved with the classical box scheme. 



454 

DISCRETISATION REQUIREMENTS 

The discretisation of the continuity equation basically should 
satisfy four requirements: 

(1) 'discrete current conservation' 
(2) 'upwinding' 
(3) interpolation uniquely defined 
(4) convergence theory available 

We only discuss these topics heuristically and briefly here as 
a vast literature exists on them. 
Most present discretisations used are based on some discrete 
analogue of Green's theorem (box schemes) and therefore 
satisfy (1). It is interesting to note that conforming finite 
element methods with the lowest order basis functions do not 
satisfy (1). This can be easily understood from the following 
one dimensional problem: uxx 1 on the interval [0,3], with 
boundary conditions u(0) = u(l) = 0. With one internal node at 
x = 1 we find that ux(3) - ux(0) = 9/4, which is not equal to 
the integral of the right hand side over the interval. The 
explanation for this is the following. In FEM we have 
performed a partial integration, thus allowing a discontinuity 
of the ux-values at internal nodes or interfaces. This in fact 
is a spurious 'current source'. In mixed FEM we do not perform 
this partial integration. In fact, continuity of ux (or, in 
more than one dimension, the normal component of grad u) is a 
requirement. So, current conservation is satisfied. More 
precisely, one of the generalised equations in the mixed 
finite element formulation of Au = f is (grad a, $) = (f,cj>), 
where <\> is the characteristic function of an element. Using 
Green's theorem on the boundary then shows that 

J a . dn = JJ f 
r 52 

The concept of 'upwinding' only plays a role if the mesh 
widths are not sufficiently small. In device modelling this is 
usually the case (cf. Markowich, 1986). All schemes used for 
these problems therefore must satisfy this requirement. 
In one dimension it is not difficult to define interpolation 
of the different quantities uniquely. In two (or more) 
dimensions we meet the following requirement. Suppose 
(simplified) that J = exp(^) V§, then exp(-*j/) J = V§, so we 
have that V x {exp(-*) J} = exp(-*) {v x J - Vg> x J} = 0. For 
a consistent way of interpolating J and ^ it is therefore 
necessary that v x J = V$ x J. We have not found a way to 
satisfy this with any of the usual box schemes. 
A convergence theory for box schemes in n dimensions with 
general elements (other than triangles) seems to be extremely 
difficult to give. For the simplest triangular case it can be 
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found in Bank and Rose (1987). 
Table 1 gives an impression of different methods with respect 
to the four criteria. 

Table 1. Classification of methods 

current 
conservation 

upwinding 

interpolation 

convergence 
theory 

FEM 

0 

0 

1 

1 

upwind 
FEM 

0 

1 

1 

1 

box 
method 

1 

1 

0 

0 

mixed 
FEM 

1 

1 

0 

1 

ONE DIMENSIONAL MIXED FEM FOR (e-» ux)„ = f(x,u) 

It is advised to consult Brezzi (1987) while reading this 
section because we shall not repeat the excellent explanations 
given there. We use the same notation and concentrate here on 
the problem stemming from f(x,u) * 0, fu(x,u) t 0. In fact, to 
understand the problem it suffices to take f(x,u) = vu. 
So, let us consider the problem 

(e-* u x) x = vu on [0,1] 

u(0) = u(l) = 1 

with v > 0. Then, taking the basis functions as in Brezzi 
(1987), the discretised problem (Lagrange multipliers will be 
unnecessary !) is given by 

1 r 

a 

u 
_ 

r i 
r i 

r2 
L J 

D is a positive diagonal matrix because u is approximated by 
piecewise constants. Eliminating a we get 

(2) [-BTA-iB - vD] u = r2 - BTA"
1^ 
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The solution of this problem (unlike the analytical solution) 
has negative entries if v is sufficiently large. 
The matrix A is a mass matrix, in the one dimensional case 
exactly the 'usual' FEM mass matrix. The integrals can be 
evaluated exactly giving a tridiagonal structure. 
In the appendix an even simpler problem is presented to 
highlight the essence of the situation. It should be stressed 
that the oscillations which occur in the solution, unlike in 
conforming FEM, do not come from the matrix D (which is 
diagonal in this case, and non-diagonal for conforming FEM). 
From (2) we find 

[I + v(BTA-1B)"1D] u = (BTA-iB)"1 [r2 -BTA-
1^] 

For v = 0, although the matrix BTA_1B is neither an M-matrix 
nor positive definite, the solution is well-behaved. For large 
enough v this is not the case anymore. 
A remedy for the stability problems is the lumping of the mass 
matrix A. This makes BTA_1B + \>D an M-matrix, which can easily 
be proven for the one dimensional case. In the appendix it is 
shown that this indeed improves the situation for the simple 
problem. 
The lumping has to be performed in a special way to maintain 
the Scharfetter-Gummel scheme for the zero recombination, 1-d 
case. Lumping basically means choosing a Lobatto quadrature 
rule to evaluate the entries of A. This quadrature must have 
abcissae coinciding with the FEM nodes. In this case we (have 
to) use 

X i + 1 , X i + l / 2 , X i + 1 

J e-+ f(x) = f(Xi) / e-+ + f(xi+1) J e-* 
x i xi x i + l / 2 

With this quadrature rule, only the diagonal elements of A are 
unequal to zero: 

X i + l / 2 X i + l / 2 
aia = Ti(Xi)2 J e-+ = J e~ 

The resulting one dimensional scheme gives exactly the usual 
box scheme if the integrals of e-^ are evaluated exactly, 
assuming \p to be piecewise linear. 
It may be remarked that, in this scheme, current densities are 
piecewise linear, not piecewise constant as in the 
Scharfetter-Gummel scheme. However, an appropriate choice of 
quadratures for the integral of the recombination over 
elements exactly gives the Scharfetter-Gummel scheme, so this 
difference is not essential. 
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TWO DIMENSIONAL PROBLEM 

In 2 dimensions, the situation is less simple. For rectangles 
we can still use the same lumping technique, giving exactly a 
diagonal matrix A. The quadrature then is defined by 

x i + l V i + 1 

J J e-V f(x,y) = <xi(i fCXi.yi) + a i i + 1 f(xi(yi+1) 

« i + i , i f ( x i + i » y i ) + a i + i , i + i f ( x i + i » y i + i ) 

with 

Xi + l/2 y.i + l/2 

<i Yi 

,-̂  

and similar definitions for the other a's. When f(x,y) is the 
inner product of two mixed FEM basis functions xL and x^, this 
automatically gives a diagonal matrix A. As in the one-
dimensional case, we then have that the Jacobian matrix is an 
M-matrix when solving Au = f(x,u) with 8f/8u > 0. 
For triangles and non-rectangular quadrilaterals we have not 
found a method to actually lump the matrix A into diagonal 
form. However we shall report, in a forthcoming publication, 
on quadrature rules for the integrals of e -^ xi .x^ that do 
maintain positive Slotboom variables (and carrier 
concentrations) for triangles of arbitrary angle, a scheme not 
yet publised as far as we know. For computational efficiency 
we then have to introduce Lagrange multipliers as described in 
Brezzi (1987). 
The mixed finite element method with the quadrature described 
above has been used to simulate a 2-d bipolar transistor, the 
configuration of which is shown in Figure 1. 

0.0 emitter base 

0.0 1.8*10-3 

-0.8*10~3 collector 

Fig. 1. Configuration of 
2-d bipolar transistor 
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The bias conditions for the collector and base are 1 Volt and 
0 Volt, respectively, whereas the emitter bias is stepped from 
-0.5 to -0.75 Volts. In order to investigate the convergence 
behaviour, the problem was solved on several grids. In Table 2 
we summarize the results obtained, both for the box method and 
the mixed finite element method. Table 3 contains the relative 
'errors' of the collector currents if the solution obtained on 
the 41 x 37 grid, calculated using the box scheme, is taken as 
the reference solution (it should be noted that this need not 
yet be close to the actual solution of the continuous 
problem). 

Table 2. Currents in A/cm at the collector 
for the box and the mixed scheme. 

V 
em 

box 

12x10 21x19 41x37 

mixed 

12x10 21x19 

-.50 2.099E-05 1.089E-05 1.020E-05 8.197E-06 9.777E-06 
-.55 
-.60 
-.65 
-.70 
-.75 

1.409E-04 
9.323E-04 
6.004E-03 
3.644E-02 
1.959E-01 

7.477E-05 
5.118E-04 
3.485E-03 
2.335E-02 
1.469E-01 

7.004E-05 
4.797E-04 
3.268E-03 
2.187E-02 
1.369E-01 

5.661E-05 
3.909E-04 
2.696E-03 
1.842E-02 
1.182E-01 

6.743E-05 
4.648E-04 
3.194E-03 
2.155E-02 
1.332E-01 

Table 3. Relative error from the solution 
of the finest mesh (41 x 37, box), 

V 
em 

box 

12x10 21x19 

mixed 

12x10 21x19 

.50 

.55 

.60 

.65 

.70 
,75 

1.059 
1.012 
0.944 
0.837 
0.666 
0.431 

0.068 
0.068 
0.067 
0.066 
0.068 
0.073 

0.196 
0.192 
0.185 
0.175 
0.158 
0.137 

0.041 
0.037 
0.031 
0.023 
0.015 
0.027 

From these tables it is clear that the mixed finite element 
method does produce much more accurate currents than the box 
method, for this problem. In the near future, it will be 
investigated whether this also is the case for other devices 
such as M0S transistors, lateral pnp transistors and 
thyristors. 
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CONCLUSION 

The result presented in Brezzi (1987) does not yet deal with 
the zero order term in the device modelling equations (in 
fact, we have not found any discussion on the inclusion of a 
zero order term in the literature). In this paper we have 
shown that a choice of quadrature for the matrix A in the 1-d 
case and the 2-d rectangular case completely solve this 
problem. Surprisingly it is not the matrix stemming from the 
zero order term that causes the problems (this term is already 
lumped because the potentials are piecewise constant), but the 
matrix A. For triangles with arbitrary angles we have found a 
'stable' scheme which will be reported on in a forthcoming 
publication. 
The advantage of the embedding of the Scharfetter-Gummel 
scheme in the framework of mixed finite element methods is the 
fact that it gives a systematic way of dealing with the 
problems met, e.g. in terms of quadratures or choices of basis 
and test functions. 
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APPENDIX 

To illustrate the problems with the mixed finite element 
method and the necessity for lumping, we consider the 
following simple 1-d problem: 

(Al) 
vu on (0,1) 

u(0) = u: u(l) = ur 

where v > 0, u: > 0, ur > 0. We reformulate (Al) as follows: 

a - u' = 0 

(A2) a' - vu = 0 

u(0) = Ul u(l) = ur 

and apply the mixed finite element method for discretising 
this problem on a simple grid with only 4 nodes (uniformly 
spaced). Letting a = ( a^, a2, a3, (j4 )

T be the vector of unknown 
'fields' and u = ( u ^ u ^ U j ) 1 be the vector of unknown 
'potentials', we obtain the following system of equations: 

A B 

BT D 

where: 

1 
= — 

18 

2 
1 
0 
0 

1 
4 
1 
0 

0 
1 
4 
1 

0 
0 
1 
2 

- 1 0 0 
1 - 1 0 
0 1 -1 
0 0 1 

1 0 0 
0 1 0 
0 0 1 

Eliminating a from the first set of equations (i.e. writing 
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a = A_1r - A"1Bu), we obtain the following system for u: 

(A3) [-BTA-!B + D] u = -BTA-1!-

We know that for the Laplace-problem, i.e. when \s = 0, the 
resulting solution is stable. In order to investigate whether 
this is also the case for v > 0, we multiply (A3) by the 
matrix -(B TA _ 1B)" 1, and obtain: 

(A4) [I3 + - (BTA-iB)"
1] u = (BTA-1B)-1BTA"1r 

where I3 is the 3 x 3 identity matrix. It is easy to check 
that: 

BTA-ir = 18 
11/15 uj + 1/15 ur 

-1/5 Uj - 1/5 ur 

1/15 Uj + 11/15 ur 

and 

18 
B̂ A-ifi = — 

5 

6 
-3 
1 

-3 1 
4 -3 
-3 6 

Although BTA_1B is not an M-matrix, its inverse is positive: 

(BTA-iB)-1 
3/2 3/2 1/2 
3/2 7/2 3/2 
1/2 3/2 3/2 

Thus, (A4) becomes: 

1 0 0 
0 1 0 
0 0 1 

5\> 

54 

3/2 3/2 1/2 
3/2 7/2 3/2 
1/2 3/2 3/2 

u = 
1 

= — 
6 

5 ua + ur 

3 u1 + 3 ur 
ux + 5 ur 
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and it is easily verified that the second component of the 
solution vector is: 

1 - u 5\! 
i2 = (uj + u r) where u = — 

5u 2 + llu + 2 54 

Thus, for \) > 54/5, u 2 will be negative, and thus the scheme 
is not stable. 
If we now use (lumped) quadrature for the integrals which 
occur in the matrix A, we obtain: 

1 0 0 0 
0 2 0 0 
0 0 2 0 
0 0 0 1 

It is straightforward to verify that 

BTA-1r = 6 

r -j 

0 
u r 

and 

BTA-iB = 
9-3 0 
-3 6 -3 
0 - 3 9 

(BTA-iB)" 
36 

5 3 1 
3 9 3 
1 3 5 

Thus, in this case, BTA_1B is an M-matrix. We can now repeat 
the same procedure as before to obtain the second component of 
the solution: 

1 Ul + ur 

2 36u2 + 15u + 1 
where u = 

108 

which is always non-negative, thus proving that the scheme is 
stable in this case. 


