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SUMMARY 

A numerical method based on a domain integral 
representation of the charge for the determination 
of the capacitance coefficients of VLSI structures 
is given. This method is refered to as energy 
method. It is shown how this method can be extended 
to situations where the simulation area contains 
semiconductor regions. In order to verify the for­
mulation and numerical accuracy, the reader is 
provided with two fully described standard sample 
problems. Furthermore, a 4 Mb DRAM cell as an 
example of a very complex 3D wiring structure in­
cluding semiconductor regions is considered. 

INTRODUCTION 

The necessity to calculate accurately the capa­
citances of interconnection wires of today's multi­
level VLSI circuits is indisputable in order to en­
sure a succesful chip design (Fichtner, 1983). Be­
sides integral equation methods, domain methods are 
used frequently for capacitance calculation. Using 
domain methods, the problem of capacitance evalua­
tion is attributed to charge evaluation. Recently, 
as alternative to the usually used boundary inte­
gral representation of the charge, Straker (1986), 
Klose (1987) and Matzke (1988a) have discussed a 
charge calculation method based on a domain inte-
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gral formulation of the charge (energy method). 
This method enhances the accuracy of the results. 
For detailed insight into the domain integral for­
mulation of the charge in connection with domain 
methods, 6ee Matzke (1988b). However, up to now 
this method was limited to situations where the 
simulation area contains no semiconductor regions. 
Hence, it is the main purpose of this paper to give 
an extension of the energy method to these cases. 

REMARKS ON THE PROBLEM 

Let U6 consider a system of N conductors (inter­
connection wires) and some reference conductor. The 
N conductors may be surrounded by dielectric media 
and semiconductor materials. Often there does not 
exist pronounced influence of the semiconductor 
regions on the capacitances to be determined. Hence 
it is possible to neglect the semiconductor regions 
(linear case). In other situations for the accurate 
prediction of the capacitances it is necessary to 
take into account the semiconductor regions. The 
non-linearity appearing in these cases arises from 
the non-linear potential dependent charge carrier 
density of the semiconductor materials (non-linear 
case). Since this paper is concerned exclusively 
with reverse biased junctions (junction capacitan­
ces), in so far as we consider capacitances between 
semiconductor regions, it is possible to assume the 
electron and hole current densities in the semi­
conductor regions to be exactly zero (zero-current 
case (Polak, 1987)). Furthermore, we neglect the 
minority carriers. Boltzmann's statistic is used 
to model the density of majority carriers. The 
quasi-Fermi potential for majority carriers is set 
to the known constant terminal potential applied to 
the conductor which contacts the corresponding 
semiconductor region. 

We assume that the reference conductor as well 
as the remaining N conductors are biased with 
prescribed potentials. Without loss of generality 
the reference conductor potential is assumed to be 
constant. A given set of such potentials is called 
bias point. Let 8Q=(8QI,..,6QN)T be the vector of 
changes of total charges on the N conductors due to 
conductor potential perturbations 6v = (6vi,.. ,8yn ) T . 
The relationship between the changes of total char-
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gee on the N conductors and the corresponding con­
ductor potential perturbations is given by 

(1) <$Q = Cs6-y 

where Cs is the NxN short-circuit capacitance ma­
trix. The elements of Cs are 

(2) csij = 6Q;'
;)/6VJ 

where 6Qi is the change of charge on conductor i 
due to a potential perturbation Syj on conductor j 
when the potentials of all other conductors remain 
unperturbed. The two terminal capacitances Cio, Cij 
and C n as usually used by the circuit designer are 
obtained from the short-circuit capacitances by the 
well known relationships (e.g. Ruehli, 1975) i. 

In our paper we calculate the capacitances di­
rectly from the above definition. A prerequisite 
for the direct use of equation (2) is the existence 
of conductors with non-vanishing surface charge 
densities. However, as it is well known, at a con­
tact (conductor/semiconductor interface) the space 
charge density is assumed to be zero. Therefore, 
there is no surface charge on the conductor at the 
contact. There are different methods to overcome 
this difficulty. One is to assume the existence of 
an equipotential surface along the pn-junction 
(Straker, 1984), Another is to extent this assump­
tion by replacing heavily doped semiconductor re­
gions by conductors. The latter offers the possi­
bility of simple applicability of the energy method 

THE ENERGY METHOD 

With reference to Fig.l, let 5~? be the bounded 
Lipschitzian domain under consideration. The bound­
ary r of the domain 5~? is the union of the outer 
boundary Po and the internal boundaries Pi (1=1,.., 
N), The latter are given by the conductor surfaces. 
Po can be split in into two classes (PO=POD U TON). 
POD denotes parts of To corresponding to boundary 

iCio is the capacitance between conductor i and 
the reference conductor, Cij is the coupling capac­
itance between conductor i and j and Cii denotes 
the total capacitance of conductor i. 
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conditions of the Dirichlet type. Usually, POD is 
given by the reference conductor. PON represents 
parts of To with boundary conditions of the Neumann 
type. TON is in principle an artificial boundary 
which has to be introduced to obtain a bounded 
domain and to consider symmetries. Note, that POD 
may also contain parts of the artificial boundary, 
because it is sometimes more convenient to intro­
duce Dirichlet boundary conditions. Furthermore, 
let n be the outward unit normal at P and ŷ a test 
function (y-; e Wi.2(S"2) where W1.2 denotes the ap­
propriate Sobolov space) satisfying the following 
boundary conditions: 

(3) t; ={ and 2ii = 0 on PON. 
0 on P\Pi\PoN dn 

The change of stored charge 6Q^J on conductor i 
due to a potential perturbation oyj on conductor j 
follows from Gauss's law as 

(4) 6Q-;j = / £ V6y!]lnid& 
J I i 

where £ is the electric permittivity and 6'YJ is the 
perturbation of the potential distribution "V of the 
considered bias point. The resulting potential 
distribution V + Syl'j) is the weak solution ( v , 
& y/0>e HI , 2( $7 )) satisfying the following boundary 
value problem: 

(5a) -V-C V(V + by^]) - q(y+6y!i>) in S? 

-y/ + Sy/^^yj + Syj on Pj 

(5b) V + 6VjJ=Yi on Pi , i*j = l,....N 

V +6y'Js-y0 on Po , ^- (T + <$V;,) = 0 on TON 
dn 

where g is the space charge density. In semiconduc­
tor regions the space charge density is given by 
Q - q(m+D) where q is the elementary charge and D 
represents the doping (fixed charges). m denotes 
the majority carrier concentration (electrons or 
holes): 

(6) m = 
n; exp( (f -V)/VT), p-type semicond, 

-n; exp( (y-f)/Vr), n-type semicond, 
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where n; is the intrinsic concentration, VT i6 the 
thermal voltage and f denotes the quasi-Fermi po­
tential of majority carriers. 

In principle (existence supposed) it is possible 
to calculate the desired changes of charges direct­
ly from relationship (4) by evaluating a boundary 
integral. However, in our paper, we will take a 
different approach, based on a variational formula­
tion. For all test functions y, (fulfiling boundary 
condition (3)) the integral in equation (4) may be 
rewritten as a boundary integral where the integra­
tion is performed over the whole boundary P . By 
ueing Green's first identity it is possible to 
transform this boundary integral into domain inte­
grals : 

(7) 6 Q/ ; ) = J ^ r £ v- a v6yf;!dv + J^evSyj!7^-dv. 

With respect to relationship (1) an expansion of Q 
in a series at the potential distribution "V of the 
considered bias point for sufficiently small byij) 

yields Q ( y + 6y(j!) = g>( y ) + ( dg /dy ) 6yij''and hence 
we have from equation (5a) 

(8) (.^7-|S) <W= 0 , -&= -qf^O. 
d~v ay oy' 

Thus equation (7) may be written as 

(9) 6 Qp = J e v6yj». vri dv - f | £ Srinfidv 

for all test functions ^ z . However, fi = oy ' /Sy-L 

ie an admissible test function and finally we have 

(10) 6Q-;i=<^i"f(f £ v6y'lW8y!pdv - L ^£ Sy(i>6y(J)dv). 
' J9. JQdr 

Note, the right hand side of equation (10) is 
proportional to the eecond-order change in energy 
of stored charge associated with conductor i. In 
particular, the first domain integral is related to 
second-order changes in total energy of the elec­
trostatic field whereas the second domain integral 
iB related to second-order changes in energy of the 

2Remark: The freedom in the choice of the test 
function jf\ can be used to compute all capacitances 
associated with conductor j -that is, column j or 
line j respectively, of Cs- with only one solution 
of the boundary value problem (5). 
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epace charge. In the linear case the second domain 
integral in relationship (10) vanishes and the 
first one has the following physical meaning. For 
i=j it represents double the self-energy of the 
total charge on conductor j when all conductors 
except conductor j are grounded. For i£j it corres­
ponds to the interaction energy between the total 
charge on conductor i and the total charge on 
conductor j when all conductors except conductor i 
and j are grounded. 

For i=j, equation (8) is the Euler-Lagrange 
equation of the positive quadratic functional 6 Qjji 

given by relationship (10), this means 6 Q;j) is 
minimised by the solution 6y(j>. With the boundary 
conditions (5b) equation (8) has an unique solution 
6"VfjJ (x)>0 for xefTB and from maximum principle 
follows: (i) A local minimum byij'{xo), xo£?2 is 
possible, but only with 6VJ';(xo)>0. (ii) A local 
maximum does not exist for xo£$~2 . Thus we have 
nj-v6VJ>>0 on Tj and n i • P <5 VJ\< 0 on Ti ( i* j = l, . . , N), 
that is C B J J > 0 and Csij= Csji^O, the classical 
properties of Cs. 

The given properties can be carried over to the 
discret problem and for different discret problems 
(<5VJ,>)K£vk

 a n d (<5 y^x+ieVK+i with VkcVK+i where V* 
and Vk+i denoting appropriate vectorspaces we have 
(with "frozen" n(-,y) Cs j j (( 6r(p) k) ?Cs j j ((6 v0')k+ i) 
because the functional 6 Qjj> and therefore Csjj can 
not increase for a larger space. Thus an upper 
bound for the total capacitances has been obtained. 

NUMERICAL RESULTS 

The following section presents numerical results 
of three sample problems. The first two examples (a 
three conductor problem and two crossing conductors 
above a ground plane) are taken from Quint (1987). 
The last example (4 Mb DRAM cell Murkin (1987)) was 
chosen to show the complexity of a real problem. 

Fig.2 illustrates the two-dimensional three 
conductor problem. We applied several programs 
(capable of solving Poisson's equation together 
with the respective boundary conditions) to solve 
this problem. TOSCA (Gajewski, 1986) is a 2D device 
simulator which is based on the finite-element 
method (FEM). By 3J>_pgm we denote a 3D program 
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which is actual under development by one of the 
authors. This program usee a finite difference 
discretization scheme (FDM). Equation (10) is the 
basis of all numerical results obtained via these 
two programs. BEM denotes a boundary element method 
program (Streese, 1988). 

The total capacitance per unit length C22 versus 
the separation S is shown in Fig.3. Fig.4 shows the 
coupling capacitance per unit length C12 versus S. 
Finally, Fig.5 illustrates the dependence of the 
coupling capacitance per unit length Cis on S. 
Corresponding to the used different program pack­
ages and/or boundary conditions applied on the 
artificial boundary, in each of these figures five 
curves are shown. In the case of the curves 
~3J>_pgm", *BEM,du/dn=(r and 'TOSCA' respectively, 
we have used an artificial boundary with a homo­
geneous Neumann boundary condition, which as natu­
ral boundary condition minimizes CBIJ for fixed $2 , 
too. The curve ~T0SCA,u=CT corresponds to the case 
of an artificial boundary with a boundary condition 
of the Dirichlet type (vo=0 on TOD, PO^TOD). With 
the help of the boundary element method it is 
possible to 6olve correctly the real physical situ­
ation of the half space. The data obtained for this 
case (curve 'BEM half sp") should be the basis for 
the discussion of both the results obtained from 
the other program packages and the usefulness of 
the different simple boundary conditions, which are 
possible for the artificial boundary. The total 
capacitance per unit length C22 of the central 
conductor increases with decreasing separation S, 
as shown in Fig. 3. The systematic differences be­
tween the results obtained by TOSCA and the other 
programs result from a lower number of grid points 
(974 points). The results correspond well to the 
data obtained via 3_JD_pgm for a grid with 49x22 
points (see table 1). It should be noted that the 
results for Neumann boundary conditions on the 
artificial boundary are closer to half space solu­
tion than the data obtained for a artificial bound­
ary with Dirichlet boundary condition. Fig.3 con­
tains additional a sixth curve which is obtained 
from the empirical formula given by Sakurai (1983). 
Corresponding to expectations the coupling capaci­
tances per unit length C12 and C13 increase with 
decreasing separation S (Fig.4 and Fig.5 respect­
ively). As can be seen by reference to Fig.5, a 
Neumann boundary condition on the artificial bound-
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ary yields to a larger coupling capacitance C13 in 
comparision with a Dirichlet boundary condition. 
Tables 1, 2 and 3 present the numerical data calcu­
lated by 3JD_pgm. Table 2 is devoted to the problem 
"What happens to the unexperienced user ?" and is 
typical for situations found in 3D problems with 
complex geometrical structure and limited numbers 
of grid points, too. Note that the calculated 
values of the total capacitances decrease with 
increasing degree of grid refinement. Fig.6 illus­
trates the potential distribution for the case when 
both the left as well as the right conductor are 
grounded whereas the central conductor is set to 
Y2>0. Partial energy density distributions be­
longing to this case are shown in Fig.7. For clear­
ness we have only depicted the portion of the total 
energy density originated in the vertical deriva­
tive of the potential. In this sense, Fig.7a illus­
trates a partial self-energy density distribution 
whereas Fig.7b shows the distribution of the par­
tial interaction energy density. From these figures 
an impression of the singularities of w at the 
conductor corners can be obtained. 

The next example considered, is the problem of 
two crossing conductors above a ground plane. Due 
to symmetry only a quarter of the original configu­
ration has to be considered, as illustrated in 
Fig.8. Fig.9 shows total and coupling capacitances 
of this configuration for two different degrees of 
grid refinement versus the distance d between the 
crossing conductors. The capacitance values are 
obtained via 3_D_pgm. The grid refinement yields a 
decrease of calculated capacitance values. The 
total capacitances Cii and C22 as well as the coup­
ling capacitance C12 decrease with increasing dis­
tance d. Table 4 presents the capacitance matrices 
for different distances d (d=0 . 2 , 0 . 4,1. 0 , 2 . 0 p,m) . 

The last problem considered is a 4 Mb DRAM cell. 
We have considered a structure consisting of two 
half cells, as illustrated in Fig.10 where the 
following abbreviations are used: bli bit-line 1, 
wli word-line 1, hli main word-line 1 (i=l,2),pl 
plate and semi_c semiconductor. The voltage depen­
dence of the bit-line 1 capacitance for a half cell 
(Cbll) is shown in Fig.11, curve *CT (Cbll=1.46 fF 
at IV; 41x25x61 points and Cbll=1.40 fF at IV; 
81x49x121 points). Curve '(grad u)**2' represents 



621 

double the second-order term of change in total 
electrostatic energy whereas curve '(-«, d rho) IB 
proportional to the second order term of change in 
energy of the space charge. The data obtained tor a 
refined grid are also shown in Fig.11 for a 
line potential of IV. 
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fable 1. Capacitance matrices for 
different grids, 3_D_pg», 
fF/1.0e-6m, S = 1.5e-%m 

po(nfs_x 
x polnts-y 
49 x 22 

1 2 3 
1 0.187 -0.034$ -0.00435 
2 -0.0348 0.136 -0.0348 
3 -0.00495 -0.0348 0.187 

Table 2. Capacitance mi 
simple grids, 
fF/1,0e-Sm, S 

polnts_x 
x points../ 

10 x 6 
1 2 

1 0.258 -0,0560 
2 -0.0560 0.265 
3 -0.00535 -0.0560 

it rices for 
3-d-pgm, 
= 1.5e-6to 

3 
-0.00535 
-0.0560 
0.258 

37 x 43 
1 0.184 -0.0341 -0.00484 
2 -0.0341 0.133 -0.0341 
3 -0.00484 -0.0341 0.184 

133 x 85 
1 0.183 -0.0338 -0.00481 
2 -0.0338 0.132 -0.0338 
3 -0,00481 -0.0338 0.183 

13 x 11 
1 0.210 -0.0405 -0.00523 
2 -0.0405 0.218 -0.0405 
3 -0.00523 -0.0405 0.210 

37 x 21 
1 0.133 -0.0361 -0.00496 
2 -0.0361 0.202 -0,0361 
3 -0.00436 -0.0361 0.133 

Table 3. Boundary element method 
(40 linear nonaequldlst. elements 
per conductor), half space 

S = 1.0e-6m, fF/1.0e-6m 
1 2 3 

1 0.13484 -0.051713-0.002713 
2 -0.051653 0.21656 -0.051653 
3 see 1 
S = 1.5e-6m, fF/1.0e-6m 

1 0.18223 -H.031919-0.002508 
2 -0.031820 0.19126 -0.031820 
S = 2.0e-6m, fF/1.0e-6m 

1 0.17745 -0.021844-0.002265 
2 -0.021743 0,18143 -0.021749 

Table 4, Two crossing conductors 
(quarter cell), capacitance matrices 
for two grids, C / fF, 3JLpgi» 

d=0.2e-€m, 30x30x26, 59x59x51 points 
1 2 1 2 

1 0.827 -0.186 0.805 -0.178 
2-0.186 0.731 -0.178 0.713 

1 po 
0.766 -0.138 

-0.138 0.653 

d*=0.4e-6m, 30x30x26, 
1 0.787 -0.144 
2-0.144 0.669 

d=1.0e-6m, 30x30x28, 59x59x55 points 
1 0.753 -0.105 0.734 -0.101 
2-0.105 0.586 -0.101 0.573 

d=2.0e-6m, 30x30x30, 59x59x59 points 
1 5.735 -0.0811 0.718 -0.0782 
2 -0.0811 0.518 -0.0782 0.508 
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