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SUMMARY

A numerical method based on a domain integral
representation o©f the charge for the determination
of the capacitance coefficients of VLSI structures
ie given. This method is refered to asg energy
method. It is shown how this method can be extended
¢ situations wWhere the gimulation area contains
gemiconductor reglons. In order to verify the for-
mulation and numerical accuracy, the reader 1is
provided with two fully described standard sample
problems. Furthermore, a 4 Mb DRAM cell as an
exanple of a very complex 3D wiring structure in-
cluding semiconductor regions is considered.

INTRODUCTION

The necegsglty to calculate accurately the capa-
cltances of interconnection wires of today’s multi-
level VLSI circuits is indisputable in order to en-
sure a succesful chip design (Fichtner, 1983). Be-
sides integral equation methods, domain methods are
used freguently for capacitance calculation. Using
domain methods, the problem of capacitance evalua-
tion is attributed to charge evaluation. Recently,
a8 alternative to the usually used boundary inte-
gral representation of the charge, Straker (1986),
Klose (1987) and Matzke (1988a) have discussed a
charge calculation method based on a domain inte-
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gral formulation of the charge (energy method).
This method enhances the accuracy of the results.
For detailed insight into the domain integral for-
mulation of +the charge in connection with domain
methods, see Matzke (1988b). However, up to now
this method was limited to situations where the
simulation area contains no semiconductor regions.
Hence, it is the main purpoge of this paper to give
an extension of the energy method to these cases.

REMARKS ON THE PROBLEHM

Let us conslder a system of N conductors (inter-
connection wires) and some reference conductor. The
N conductors may be surrounded by dielectric media
and semlconductor materials. Often there does not
exiet pronounced 1Influence of +the semiconductor
reglons on the capacitances to be determined. Hence
it is possible to neglect the semiconductor regions
(linear case). In other situations for the accurate
rrediction of the capacitances it is necessary to
take into account the semiconductor regions. The
non-linearity appearing in these cases arlises from
the non-linear potential dependent charge carrier
density of the semiconductor materials (non-linear
case). Since thils paper is concerned exclusively
with reverse blased Jjunctions (Jjunction capacitan-
ceg), 1in so far as we consider capacitances between
semiconductor regicns, 1t 1s possible to assume the
electron and hole current densities 1in the semi-
conductor regions to be exactly zero (zero-current
case (Polak, 1987)). PFurthermore, we neglect the
minority carriers. Boltzmann's statistic 1s used
to model the density of majority carriers. The
quasi-Fermi potential for majority carriers 1s set
to the known constant terminal potential applied to
the conductor which contacts the corresponding

gsemiconductor region.

We assume that the reference conductor as well
a8 the remaining N conductors are blased with
pregcribed potentiale. Without loss of generality
the reference conductor potential is assumed to be
constant. A given set of such potentials 1is called
blas point. Let 6Q:(6Q1,..,6QN)T be the vecior of
changees of total charges on the N conductors due to
conductor potential perturbations 6V:(6W1,..,6?N)T.
The relationship between the changes of total char-
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ges on the N conductors and the corresponding con-
ductor potential perturbations is given by

(1) §Q = Csdy

where Cs 1is the NxN short-circuit capacitance ma-
trix. The elementes of Cs are

(2) Cois = 6@ /8v;

where <5Q?’ is the change of charge on conductor 1
due 1o & potential perturbation éyj on conductor 3
when the potentials of all other conductors remain
unperturbed. The two terminal capacitances Cio, Cij
and Cii as usually used by the circuit designer are
obtained from the short-circuit capacitances by the
well known relatlionships (e.g. Ruehli, 1975)t.

In our paper we calculate the capacitances di-
rectly from the above definition. A prerequisite
for the direct use of equation (2) is the existence
of conductors with non-vanishing surface charge
densities. However, as 1t is well known, at a con-
tact (conductor/semiconductor interface) the space
charge density is assumed +fc be zero. Therefore,
there is no surface charge on the conductor at the
contact. There are different methods 1o overcome
thie difficulty. One 1s to assume the existence of
an equipotential surface along the pn-junction
{(Straker, 1984). Ancther is to extent this assump-
tion by replacing heavily doped semiconductor re-
gione by conductors. The latter offers the possi-
billity of simple applicability of the energy method.

THE ENERGY METHOD

With reference to Fig.l, let $2 be the bounded
Lipschitzian domain under consideration. The bound-
ary I of the domain G2 ie the union of the outer
boundary Mo and the internal boundaries [i (i=1,..,
N). The latter are given by the conductor surfaces.
Mo can be split in intc two classes ([o=[op U [on).
[op denoteg parts of [¢ corresponding to boundary

1Cic 1s the capacitance between conductor 1 and
the reference conductor, Cij is the coupling capac-
itance between conductor i and J and Cii denoctes
the total capacitance of conductor 1.



conditions of the Dirichlet +type. Usually, [op is
given by the reference conductor. [oN represents
parts of [o with boundary conditions of the Neumann
type. [(on is in principle an artificial boundary
which has to be introduced to obtain a bounded
domain and to consider symmetries. Note, that [ oD
may also contain parts of the artificial boundary,
becauge 1t is sometimes more convenient to intro-
duce Dirichlet boundary conditions. Furthermore,
let n be the outward unit normal at [ and yia test
function (y;e W1.2(S2) where W!.,Z denotes the ap-
propriate Sobolov space) satisfying +the following
boundary conditions:

1on [ )
(3) ; = and i = 0 on lon.

0 on \[M\ on an

The change of stored charge éQﬁ“ on conductor 1
due to a potential perturbation dv; on conductor J
follows from Gauss s law &s

(4) éQﬁf’:fr €78 inide

where £ is the electric permittivity and &vY'is the
perturbation ¢f the potential distribution v of the
considered bias point. The resulting potential
distribution v + 6w ig the weak solution (v,
v e Wi,2(G? )) satisfying the following boundary

vslue problem:

(5a) -7 vy +ovT) = g v+ 6v9) in 57
w + 6w =vs4bv; on [

(5b) va+bv =¥ on M, it3d=1,....N

v +8vi'=v¥s on o ,é‘%(ﬂ}/+éw{‘”)=0 on [lon
where p is the space charge density. In semiconduc-
tor reglons the space charge density ie given by
@ = a(m+D) where q 1s the elementary charge and D
represents the doping (fixed charges). m denotes
the majority carrier concentration (electrons or

holes):

‘{ n;exp((f—%)/VT), p-type semicond.
(6) m =

-n;jexp((¥-F)/Vr), n-type semicond.
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where n; is the intrinsic concentration, Vr is the
thermal vocltage and 7 denotes the quasi-Fermi po-
tential of majority carriers.

In princirle (existence supposed) it is possible
to calculate the desired changes of charges direct-
ly from relationship (4) by evaluating a boundary
integral. However, in our paper, we will take a
different approach, based on a variational formula-
tion. For all test functions y; (fulfiling boundary
condition (3)) the integral in equation (4) may be
rewritten as a boundary integral where the integra-
ticen 1is performed over the whole boundary [~ . By
using Green's first identity it ie possible to

transform this boundary integral into domain inte-
grale:

7 éQ{f’JQ;;} v-erdyiav +]§-?E vOvY opav.

With respect to relationship (1) an expansion of @
in & serlies at the potential distribution ¥ of the
considered bilas point for sufficiently emall 6 ‘i’

yields Q(v+6évY)) = 0(w)+(30/0v) Sv''and hence
we have from equation (ba)

o0p om

= -q3—30.

v _dey Sy _0g
(8) (-VgV-Zyovi=o0, -5 5

Thus equation (7) may be written as
(9) 6Q§”=]QE vovilyy av —/Qg_fip 8¥" yr av

o)
for all test functions y;2. However, ¢ = é?’l/évq
is an admissible test function and finally we have

(10) (5Q(-(")=f5"‘f’i-4(j§?£ vov ilgbyiav -fgg—iév“"hf‘”dv).

Note, +the right hand side of equation (10) 1is
proportional +to the second-order change in energy
of 8tored charge associated with conductor 1. 1In
particular, the first domain integral is related to
second-order changes in total energy of the elec-
trostatic field whereas the second domaln integral
ig related to second-order changes in energy of the

2Remark: The freedom in the choice of the test
function y; can be used to compute all capacitances
assoclated with conductor j -that is, column J or
line j respectively, of Cs- with only one solution
of the boundary value problem (5).
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space charge. In the linear case the second domain
integral in relationship (10) vanishes and the
firet one has the following physical meaning. For
izj it represents double the self-energy of the
total charge on conductor J when all conductors
except conductor j are grounded. For 1%J it corres-
ponde to the interaction energy between the total
charge on conductor 1 and the total charge on
conductor J when all conductors except conductor i

and J are grounded.

For 1=3, equation (8) is the Euler-Lagrange
equation of the positive quadratic functional é Q‘”
given by relaticnship (10), this means éQ W ie
minimized by the solution 6#”1) With the boundary
Conditions {(5b) eguation (8) has an unique solution
S ! (x)>0 for xeSZ¢ and from maximum principle
follows: (i) A local minimum 0vY(xo0), xo0€52 is
poseible, but only with 6% (x0)>0. (i1) A local
maximum doee not exist for xoe%2 . Thus we have
;P890 on 5 and ni-VOvY%0 on IMi (itj=1,..,N),
that 1s CsB33>0 and Csij= Cs3i&0, the classical

properties of Cs.

The given properties can be carried over to the
discret problem and for different discret problems
(%Y keVk and (§wY))k+1gVk+1 with VkcVk+1 where Vk
and Vk+1 denoting appropriate vectorspaces we have
(with "frozen” n;,vw ) Csjs((6v' i )k)3Ce55((8wP)k+1)
because the funotional 6Q‘ﬂ and therefore Csj; can
not increase for a larger space. Thus an upper
bound for the total capacitances has been obtained.

NUMERICAL RESULTS

The following section presents numerical results
of three sample problems. The first two examples (a
three conductor problem and two crossing conductors
above & ground plane) are taken from Quint (1987).
The last example (4 Mb DEAM cell Murkin (1887)) was
choesen to show the complexity of a real problem.

Fig.2 illustrates the +two-dimensional three
conductor problem. We applied several programs
(capable of solving Poisson’'e egquation together
with the respective boundary conditions) to solve
this problem. TOSCA (Gajewskil, 1986) is a ZD device
simulator which 1is based on the finite-element
method (FEM). By 3_D_pgm we dencte a 3D program
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which 1ie actual under development by one of the
authors. This program uses a finite difference
discretization scheme (FDM). Eguation (10) is the
basis of all numerical results obtained via these
two programs. BEM denotes a boundary element method
program {(Streese, 1988).

The total capacitance per unit length Cz2z versus
the separation S 18 shown in Fig.3. Fig.4 shows the
coupling capacltance per unit length Ciz versus S.
Finally, Fig.5 1llustrates the dependence of the
coupling capacitance per unit length Cis on 8.
Corresponding to the used different program pack-
ages and/or Dboundary conditions applied on the
artificial boundary, in each of these figures five
curves are shown. In +the case of the curves
"3_D_pem”, "BEM,du/dn=0" and "TOSCA" respectively,
we have used an artificial boundary with & homo-
genecus Neumann boundary condition, which as natu-
ral boundary condition minimizes Csij for fixed §e ,
too. The curve “TOSCA,u=0" corresponds to the case
of an artificlial boundary with a boundary condition
of the Dirichlet type (wo=0 on [Top, [Mo={op). With
the help of the boundary element method it is
pogeible to solve correctly the real physical situ-
atlon of the half space. The data obtained for this
case (curve "BEM half sp”) should be the basis for
the discussion of both the results obtained from
+the other program packages and the usefulness of
the different simple boundary conditions, which are
poselble for the artificial boundary. The total
capacitance per unit length C2z of the central
conductor increases with decreasing separation 8,
ae shown in Fig.3. The systematic differences be-
tween the results obtained by TOSCA and the other
programs result from a lower number of grid points
(874 points). The results correspond well to the
data obtained via 3_D_pgm for a grid with 49x22
points (see table 1). It should be noted that the
results for Neumann boundary conditions on the
artificial boundary are closer to half space solu-
+ion than the data obtained for a artificial bound-
ary with Dirichlet boundary condition. Fig.3 con-
tains additional a sixth curve which 1s obtailned
from the empirical formula given by Sakurai (1983).
Corresponding 1o expectations the coupling capaci-
tances per unit length Ciz and Ci3 increase with
decreasing separation 8§ (Fig.4 and Fig.d respect-
ively). As can be seen by reference +to Fig.5, a
Neumann boundary condition on the artificial bound-
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ary vyields to a larger coupling capacitance Ci3 in
comparision with a Dirichlet boundary condition.
Tables 1, 2 and 3 present the numerical data calcu-
lated by 3_D_pgm. Table 2 is devoted to the problem
"What happens to the unexperienced user ?” and 1is
typical for situations found in 3D problems with
complex geometrical structure and limited numbers
of grid points, too. Note that the calculated
values of +the total capacitances decrease with
increasing degree of grid refinement. Fig.6 illus-
trates the potential distribution for the case when
both the 1left as well as the right conductor are
grounded whereas the central conductor is set to
v2>0. Partial energy density distributions be-
longing to this case are shown in Fig.7. For clear-
ness we have only depicted the portion of the total
energy density originated in the vertical deriva-
tive of the potential. In this sense, Fig.7a 1illus-
trates a partial self-energy density distribution
whereas Fig.7b shows the distributicon of the par-
tial interaction energy density. From these figures
an impression of the singularities of ow at the
conductor corners can be obtained.

The next example considered, 1s the problem of
two crossing conductors above a ground plane. Due
to symmetry only & qQquarter of the original configu-
ration has to be considered, as 1llustrated in
Fig.8. Fig.92 shows total and coupling capacitances
of this configuration for two different degrees of
grid refinement versus the distance d between the
crossing conductors. The capacitance values are
obtained via 3_D_pgm. The grid refinement yields a
decrease of calculated capacitance values. The
total capacitances Ci11 and Cz2z as well as the coup-
l1ing capacitance Ci12z decrease with increasing dis-
tance d. Table 4 presents the capacitance matrices
for different distances d (d=0.2,0.4,1.0,2.0 pm).

The last problem considered is a 4 Mb DRAM cell.
We have considered a structure consisting of two
half cells, as 1illustrated in Fig.10 where the
following abbreviations are used: bli bit-line 1,
wli word-line 1, hli main word-line 1 (i=1,2),pl
plate and semi_c semiconductor. The voltage depen-
dence of the bit-line 1 capacitance for & half cell
(Cbll) is shown in Fig.l1ll, curve "C° (Cbll=1.46 fF
at 1V:; 41x25x61 points and Cbll=1.40 fF at 1V;
81x49x121 points). Curve ~“(grad u)XxZ' represents
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double the second-order term of change in total
electrostatic energy whereas curve "(-u, d rho)” 1is
proportional to the second order term of change 1in
energy of the space charge. The data obtained for a

refined grid are also shown in Fig.1ll for a bit-
line potential of 1V.
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