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ABSTRACT 

It is by now widely accepted that the role 

played by quantum effects cannot be ignored if one 

wishes to gain insight in the transport properties of 

submicron structures such as MOSFETS or 

heterojunctions. For example, tunneling currents 

and/or mobilities in these devices cannot be 

adequately predicted without taking into account the 

existence of discrete energy levels and spatially 

confined wavefunctions (Ando,1982;Zollner,1986). 

We have developed a pseudovariational 

algorithm, details of which are given elsewhere 

(Magnus,1988), capable of simultaneously solving 

Schrodinger's and Poisson's equations in an accurate 

way. Moreover, if compared with purely numerical 

solution schemes, its low computational cost makes it 
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more suitable for implementation in a device 

simulator. 

In this paper we report on improvements of this 

method to account for a more complete description of 

the depletion layer potential in Si inversion layers, 

as well as to calculate characteristic quantities 

(Fig.l) for AlGaAs/GaAs heterojunctions as a function 

of temperature, spacer layer thickness and doping. 

1. DESCRIPTION OF THE METHOD 

Details of the method employed in SCALPEL to 

calculate subband energies and wavefunctions have 

already been published (Magnus,1988}. In short, 

SCALPEL starts from an ad hoc form for the Hartree 

inversion layer potential and a suitably scaled 

orthonormal basis of wavefunctions, both of which can 

be modified at discretion. At each iteration, the 

diagonalization of the Hamiltonian yields the energy 

levels and the mixing coefficients of the subband 

wavefunctions, while the Fermi level of the system is 

determined by fixing the total (mean) number of 

electrons. 

Subsequently, the parameters making up the 

Hartree potential are extracted by matching the first 

few moments of the charge distributions n, and n?, 

obtained from Schrodinger's and Poisson's equations 

respectively , and the new Hamiltonian is calculated. 

Thus, convergence yields the Hartree parameters as a 

function of the wavefunction scaling factor, which is 

in turn iteratively determined by requiring the free 

energy function of the system, 
* 

F(b) = - 1/(3 In Tr e-(3H , 0 = 1/kT (1.1) 
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where H is the exact Hamiltonian of the many-

electron system, to be a minimum. 

An exact calculation of the free energy is 

impossible, as this would require the complete 

diagonalization of H , which is not known. However, a 

perturbation expansion for F in the basis of the 

unperturbed initial wavefunctions can be used 

{Feynman,1972) to obtain a rigorous upper bound for 

F, F' : 

F < F' where F' = F^ + <H -H,> o o o ( 1 . 2 : 

Here, F is the free energy of the system in the 

initial wavefunction basis, and the second term is 

the unperturbed ensemble average of the difference 

between the inversion layer potential (i.e. the sum 

of the depletion and the Hartree potentials) and the 

potential from which the initial set is derived. 
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Fig 1.1: Free energy of the 2DEG and rms 
residue of the charge densities vs b. 

Fig 1.1 shows a plot of F' versus wavefunction 
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scaling factor b for typical inversion and depletion 

layer densities: notice that the curve is smooth and 

has a unique minimum. In this figure, the mean square 

residue of the charge densities n. and n2 for the 

same values of b is also plotted. This quantity too, 

which can be interpreted as a figure of merit for the 

selfconsistency of the iteration, has a sharp, single 

minimum at a value of b which is approximately the 

same as that for F'. The coincidence of the minima, 

though no proof in itself, nonetheless seems to 

suggest that this approximation for F can be used to 

find the thermodynamical equilibrium state of the two 

dimensional electron gas (2DEG). 

The initial wavefunction basis employed in this 

paper is the same as the one previously used 

(Magnus,1988), namely Laguerre-type functions which 

are solutions of a one-dimensional inverse distance 

potential. 

The choice of the Hartree potential is in 

principle independent of the specific basis adopted; 

however, since these two quantities are related to 

one another through Poisson's equation, better 

convergence is obtained in practice if the potential 

is engineered so that its second derivative has a 

functional dependence approximately resembling that 

of the wavefunctions. In any case, we have observed 

that modifying the Hartree potential has limited 

repercussions on typical macroscopic properties of 

the 2DEG, such as the average spatial extent of the 

charge density, or the subband populations. 

2. FULL DESCRIPTION OF THE DEPLETION LAYER POTENTIAL 

IN A Si-INVERSION LAYER 

A number of attempts at solving the inversion layer 

problem (Pals, 1972; Khondker, 1987) in Si and GaAs 
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have approximated the form of the depletion layer 

potential by retaining only the linear term, thus 

giving 

dep ^ dep s 

where N, - N.z,, N. is the dopant concentration in dep A d A r 

the bulk and e is the permittivity. The thickness of 

the depletion layer z. is obtained by requiring the 

potential at the edge of the depletion layer to be 

continuous with the bulk values: 

^ V d e P
( z d ) Fp , b (2.2) 

where W., the d i s t ance between the conduction band 
edge and the quasi-Fermi l eve l for majori ty c a r r i e r s 
E , i s a function of NA> 

In any case z , , being a function of N. and E„, 
must be included in the s e l f c o n s i s t e n t c a l c u l a t i o n i f 
the problem i s s t a t ed in terms of N. ra ther than 
N, . This i s done by solving (2.2) (Pals,1972) for dep 

0 . 2 

0 . 0 

100 p-SI 
T = 300 K 

-19 -3 
n ( z ) x 10 cm 

0 . 0 0 

Vo l ts 

- -0 .05 

z ( n m ) 

- -0 .10 
.12 

N = 10 cm 
i n v 

N = 10 cm 
A 

• 0 . 1 5 
0 1 0 2 0 3 0 

Fig. 2.1 : Electronic charge density and 
potential versus Inversion layer distance. 



76 

z^ at each iteration until convergence is attained; 

an Aitken acceleration scheme (Gerald, 1984) is 

employed to reduce the number of iterations 

necessary. 

Fig 2.1 shows the charge density n(z) as a 

function of distance z in the inversion layer 

superimposed on a plot of the total potential V(z). 

The potential remains linear even for distances at 

which the charge density is practically zero, 

demonstrating that the assumption that the squared 

term can be neglected is indeed justified. Notice 

also that n{z) shows a bump ,in the tail; this 

suggests that the initial wavefunction basis, 

although yielding relatively accurate results as far 

as macroscopic parameters are concerned, does not 

mirror the spatial behaviour of the true 

wavefunctions to their full extent. Indeed, a 

least-squares fit of fully numerical solutions of the 

selfconsistent problem show that the charge density 

varies as the product of a polynomial and 

exp[-(z/b) ' ], whereas the exponential dependence of 

the Laguerre-type functions is linear. This result 

agrees with the findings of Takada (1977), and 

efforts are now underway to look for a potential 

whose solutions display the correct spatial 

behaviour. 

3. AlGaAs/GaAs HETEROJUNCTIONS 

It is well-known that the channel current in a 

HEMT is determined directly by N , the areal density 

of the quasi-two-dimensional electron gas (2DEG) near 

the heterointerface. Consequently, any reliable model 

for a HEMT should enable one to calculate Ng as a 

function of extrinsic quantities like spacer layer 

thickness (d,), donor concentration (N,) and Al-mole 
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fraction (x). 

However, all previous calculations of this type 

(Park and Kwack, 1986 and references therein) are 

just based on empirical expressions for the subband 

energies. On the other hand SCALPEL could be adapted 

in a straightforward way to the heterojunction case 

to yield an expression for the Fermi energy as a 

function of N without having to fit experimental 
s 3 r 

data. 

As an application, we have modified Park and 

Kwack's (1986) two-step calculation of the density N 

at the AlGaAs/GaAs heterointerface as follows. 

First, we calculated the relative position of 

the Fermi level E with respect to the AlGaAs 

conduction band edge, using Fermi-Dirac statistics. 

Subsequently, we inserted the explicit 

dependence of E„ on N in the equation, which was 
r- F S ^ 

derived by Park and Kwack (1986) to obtain N in 

terms of d,, N, and x. 

Fig 3.1: Energy band diagram at the heterointerface 

In practice, we considered the heterojunction of a 

AlGaAs/GaAs HEMT, the interface of which is taken to 

be at z=0 as shown in fig. 3.1. 

The AlGaAs part (region 1) consists of a 
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heavily doped A ^ G a A s ^ layer (-W<z<-d.,) and an 

undoped spacer layer (-d,<z<0). Since the GaAs part 

(region 2, z>0) is assumed to be unintentionally 

doped, the formation of a quantum well is caused 

solely by AE , the energy-band discontinuity at the 

heterointerface. 

In the local density approach, the free 

electron concentration in the AlGaAs region may be 

expressed in terms of the local conduction band edge 

E ,(z) as follows : 

n(z) N F, .-C 1/2 
r E F - E c l ( z n 

kT 
(3.1) 

where N is the effective density of states in the 
c J 

conduction band and F. .~(x) represents the 

Fermi-Dirac integral. If x<2, the latter may be 

approximated with a maximum error of less than 1% by 

F1/2(x, 
r* ln(l+e' 1+0.7357* x+lx2+l.980851 3.2 

In the same way the ionized donor concentration reads 

Nd ( z ) 

l+2e
e[Ed+EF-Ecl(z)3 

, p-l/kT, (3.3) 

where E, is the donor ionization energy. 

The charge neutrality at z=-W requires n^ (-W)=N(j(-W) 

and leads to an equation for X=|3[ EF~E .̂  (-W) ] , which 

is first solved : 
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(3.4) 

On the other hand, the equation which is satisfied by 

N may be derived (Park and Kwack,1986) by 

integrating the one-dimensional Poisson equation 

between z=-W and the heterointerface z-0 and using 

the continuity of the electric displacement vector at 

z=0, yielding 

2 2 2 
q Ns 2q d ^ 

ElNd 
- AEc + EF - Ec2(0) - 2kTX 

2kTln<U + e 
p[Ed-AEc+EF-Ec2(0)+q

2Nsd1/
El 

+ 2kTln^l + e 
PEd+M 

- 0 (3.5) 

where e, is the permittivity of Al Ga, As. The Fermi 1 c J x 1-x 
energy is calculated with the help of SCALPEL (two-

subband calculation) and may be approximated 

accurately by the following analytical expression : 

y - — 
2a 

-b + Jb2 + 4a(np-•c) (3.6: 

where 

E_-E -(0) = y meV, N = n xl0+12cm 2, (3.7 
t C £ S S 

and a = -3.03075x10 7, b = 3.36549x10 3, c = 0.63301, 

p = 0.29631 are room-temperature values. 

The comparison between our results and those of 

Park and Kwack (1986) is shown in figures 3.2 and 

3.3. It is clear that the densities reported by Park 

and Kwack (1986) are systematically lower than our 

results. This may be explained by considering their 

analytical . approximation for the Fermi-Dirac 
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i n t e g r a l , which o v e r e s t i m a t e s t h e c o n t r i b u t i o n of t h e 

f r e e e l e c t r o n s in the AlGaAs p a r t and t h e r e f o r e 

u n d e r e s t i m a t e s t h e channe l d e n s i t y N . 
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However, the fact that in both cases the 

calculated density is higher than the experimental 

one, may be a consequence of the uncertainty in the 

value of a appearing in 

AE - ax meV (3.9) 

as becomes clear by inspection of equations (3.5). 

Incidentally, recent papers (Park,1986;L.Eaves,1986 ) 

report values of a ranging from 800 to 1100, which 

may give rise to appreciable differences in N . 

4. CONCLUSION 

In this paper, we have reported on some 

applications of SCALPEL, a robust and flexible 

algorithm designed to calculate subband energies and 

wavefunctions in quasi-two-dimensional electron 

gases. 

We have derived an unequivocal upper bound for 

the free energy of the system, whose minimization 

allows us to extract the spatial scaling factor of 

the quantummechanical charge density. 

Moreover, we applied SCALPEL to the calculation 

of channel densities in HEMT'S as a function of 

typical design parameters, obtaining results in good 

agreement with previously published work. 
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