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Abstract 
A comprehensive numerical simulation has been developed in order 

to obtain a greater understanding of the operation and limitations of non-
planar devices. The simulation employs a new, extremely flexible finite-
difference scheme which is capable of fitting a two dimensional mesh to 
any user defined device domain. The simulation has been used to analyse 
a coplanar varactor diode, results for which are presented.The model has 
been extended to investigate the effects of surface states on device perfor
mance. 

Introduction 
The development of monolithic microwave integrated circuits 

(MMICs) has stimulated particular interest in surface orientated GaAs 
devices. These devices frequently require intricate, non-planar geometries 
and complex doping profiles. For example, a coplanar varactor diode has 
been developed for inclusion in an MMIC oscillator where the topology 
complements that of the surface orientated GaAs MESFET (fig, 1). 

The capacitance-voltage characteristics of these devices depend 
directly on the donor doping profile of the epitaxial layer and in order to 
obtain a maximum capacitance change, a hyperabrupt doping profile is 
often used (fig. 2). At high bias, the edge of the depletion region is pushed 
into the low doped region of the epitaxial layer. The sloping sidewall, 
which is produced by selective etching, was developed to limit the sideways 
spread of the depletion region at these bias voltages and limit the resulting 
capacitance change. 
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Fig. 1 Coplanar varactor diode 
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Fig. 2 Doping Profile of A Typical Hyperabrupt Varactor Diode. 

The numerical simulation presented here was developed in order to 
obtain a greater understanding of the physical operation of non-planar 
GaAs devices such as the coplanar varactor and the model may be used to 
predict both the D.C., transient and R.F. characteristics. Further, the abil
ity to model arbitrary geometry devices allows the evaluation of complex 
structures prior to fabrication. 

The Classical Semiconductor Equations 
The majority of physical device models, where the dimensions of the 

device geometry are greater than 1 fj.ni employ the classical semiconductor 
equations. These equations have been derived, both rigorously and heurist-
ically, from the Boltzmann transport equations by several workers, Reiser 
(1973), Selberherr (1984) and Snowden (1986). In general terms, these 
models require the self-consistent solution of the following equations1 

fj.ni
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Poisson's equation: 

V ^ = —2_(Afo - n) (1) 
£oer 

where tjj is the electrostatic potential, q is the electronic charge, e0er is the 
permittivity, Np is the donor doping density and n is the electron concen
tration. 
Current continuity: 

f- = ±VJH + G (2) 
at q 

where Jn is the electron density and C is the generation-recombination 
rate, which in most unipolar devices such as MESFETs and Schottky 
varactor diodes is assumed to be negligible for normal operating condi
tions. 
Current density: 

J„ = qnv„ + qD„Vn (3) 

where v„ is the electron drift velocity and D„ is the electron diffusion 
coefficient. 
The diffusion coefficient, Dn, is often defined in terms of the Einstein rela
tionship. 

kT 
Dn = —-Hn (4) 

q 
where k is the Boltzmann constant and T is the lattice temperature. Fre
quently, the drift velocity term in equation (4) is replaced by: 

v„ = -n„E (5) 

where, the electric field 

E = -Vtf (6) 

The current, I associated with the contact of the semiconductor dev
ice is obtained by intergrating the total current density, J across a suitable 
surface surrounding the'contact. 

/ = / Ids (7) 
s 

The total current density, J includes both the particle current, J„ and 
the displacement current 

dE 
J = J„ + er£d~^- (S) 

Unipolar devices such as MESFETs and Schottky varactor diodes are usually analysed using a single 
species set of the basic transport equationsowever, the treatment for holes is entirely analogous. 
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The physical model described by these equations is subject to three 
main assumptions. These are that the carrier velocities respond instantane
ously to changes in the electric field and that the mobility and diffusion 
coefficients are functions of the electric field alone. In practice, this seems 
to be an adequate approximation in circumstances where the electric field 
is changing slowly with time and space. The mobility and diffusion 
coefficients are dependent on several parameters (for example electron 
temperature, carrier concentration and electric field) (Doades,1984, 
Snowden,1986). The influence of hot electron effects in smaller geometry 
devices is discussed elsewhere (for example, Snowden, 1987). 

Modelling of the boundary conditions 
The domain of the device model is defined by the geometry chosen to 

represent the actual device. The surface orientated nature of non-planar 
devices requires a two dimensional model to account for the non-uniform 
nature of the electric field and electron distribution. The boundary of the 
simulation domain consists of two components; real "physical" boundaries 
such as contacts and free surfaces and internal boundaries which limit the 
device domain within the semiconductor. 

Schottky Contacts 
The simulation incorporates a sophisticated Schottky contact model 

which is capable of modelling accurately both thermionic and thermionic-
field emissions. 

The ]j£ component is expressed in terms of an effective recombina
tion velocity, vr and a quasi-equilibrium electron density n0. 

Jre =q("s ~n0)vr (9) 

where ns is the electron concentration on the semiconductor side of the 
Schottkv contact. The effective recombination velocity is given by 
(Sze,1981). 

A'T2 

* - it m 

where A * is the effective Richardson constant and Nc is the effective den
sity of states in the conduction band (Sze,1981). The quasi-equilibrium 
electron density is obtained from 

n0 = Nc.exp 

where q</>bn is the barrier height and k is the Boltzmann constant. The 
potential fa at the Schottky barrier interface is 

*s = VA- <hn (12) 

where VA is the applied potential on the Schottky metalisation. 
Analysis of the thermionic-field component, JTp£ is more compli

cated, since the shape of theotential barrier (hence the doping profile) 

4>bn 

' kT 
01) 
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affects the tunnelling current-voltage characteristic. Analytical expressions 
for the reverse bias I-V characteristic in the case of hyperabrupt profiled 
Schottky barriers have been developed by Tasker (1983) by re-writing the 
obtained by Padovani and Stratton (1966) in terms of the maximum elec
tric field at the interface, £,„. 

T T ^" 

JTFE = J*exp 

where 

J, = 
A T2(7tEooy 1/2 TqHl 

kT ELc? 

£0 

- g^tanh 
kT 

1/2 

exp 

Co = Eo\cc 
kT 

- tanh 

= 2£ 
a 

(Nr 

2ES 

kT 
1/2 

-1 /2 

q<h,x~ 
kT 

and 

h 

(13) 

(14) 

(15) 

(16) 

(17) 

The total electron current density through the contact is given by the 
sum of the thermionic emission and thermionic-field emission com
ponents, i.e. 

JTOT = Jre + JTFE (IS) 

Surfaces 
The influence of surface charge and passivation can significantly 

effect the physical operation of small geometry devices. The surface con
ditions are invariably modelled using Neumann boundary conditions and 
may be expressed as 

Snj} _ Qsurf 

6n Es 
(19) 

where Qsurf is the charge on the surface of the semiconductor which is 
given by 

Qstuf = <jDs (20) 

where Ds is the density of surface states. 
In the absence of more reliable data, the density of occupied surface 

states is usually assumed constant at 1010 m ~z.eV~l at a doping density of 
lCPm "3 (Williams, 1983). Although satisfactory in high doped regions, 
this approach results in very long space-charge regions in areas of low dop
ing density. Consequently, this technique was not suitable for inclusion in 
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this simulation where the doping density may be as low as 1021. On n-type 
GaAs surfaces, the surface states pin the Fermi level at the surface at 
around Ec - 0.8 eV. Therefore, a more realistic surface state model was 
implemented by pinning the potential at "exterior" nodes which are very 
close to the surface of the device. The effects of surface depletion on dev
ice performance are analysed later in this paper. 

Internal boundaries must be introduced in order to limit the device 
domain. However, a priori knowledge of the symmetry and operation of 
the device usually allows the definition of suitable boundaries. These sur
faces are modelled using Neumann boundary conditions and it is assumed 
that the potential and carrier gradients normal to the surface are zero, 

* U a *L = o (2i) 

Implementation 
The software generates a finite-difference mesh automatically at 

run-time using data supplied interactively by the operator. As well as 
fitting a suitable mesh to a complex arbitrary device domain, the program 
is sufficiently flexible to undertake automatic mesh refinement, incor
porating the technique of finite boxes (Franz et al, 1983), as required. 

The initial mesh used in the simulation of the coplanar varactor diode 
is shown in fig. 3. Once the mesh has been created, using a similar tech
nique to that described by Barton (1986), the horizontal mesh lines are 
sorted by v coordinate and the domain can then be traversed in an efficient 
manner. Note that only half the device is analysed as the coplanar varactor 
is both electrically and physically symmetrical about the centre of the 
Schottky contact. 

Discretisation of the Semiconductor Device Equations 
The finite-difference equations used in this work are derived from 

second-order truncated Taylor series expansions for the semiconductor 
device equations and assume the these equations are single valued with 
continuous derivatives. This form of discretisation is very well documented 
(Reiser,1973; Selberherr,1984; Snowden,1986) and usually employs the 
classical five point difference scheme in which a central node is surrounded 
by four neighbours (fig. 4). The discretisation of the parabolic current con
tinuity equation is considerably more difficult than that of the elliptic Pois-
son equation due to the time dependence. In order to minimise the discre
tisation error, the current density is calculated at the half points surround
ing the central node. Localised mesh refinement may be implemented 
using the technique of Franz et al (1983) which results in a six point discre
tisation, (fig. 4). 

Discretisation of the boundary conditions 
Dirichlet boundary conditions, where the potential and carrier con

centrations are fixed at some pre-defined value, are easily implemented 
using finite-differences and are frequently used to model Ohmic contacts. 
As previously stated, contact-free surfaces are usually modelled using 
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Fig. 3 Initial mesh used in the simulation of the coplanar diode. 
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Fig. 4 Five point discretisation and 
extended six point scheme. 
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Neumann boundary conditions the implementation of which can be rather 
complex, particularly in the transition between Neumann and Dirichlet 
boundaries and on surfaces which are not orthogonal to the coordinate 
axes. The discretised approximations to the derivative boundary condi
tions may be formulated in several ways. The most popular methods 
employ either the Newton polynomial or the central difference formula 
(sometimes referred to in this context as the Stirling polynomial). It is the 
latter technique which has been implemented in this simulation as it offers 
improved accuracy, particularly in regions where the solution is rapidly 
changing. 

Considering the situation at a bevelled boundary (fig. 5); the boun
dary condition for derivatives perpendicular to the device surface may be 
expressed as (Franz et al, 1983) 

*L = f W + ŝin<? 
dn « ty 

(22) 

where Tt is the normal to the surface and 8 is the angle between the perpen
dicular and the bevelled edge. 

3 
| k 

r 

1 

9 

hi 

2 
I * ' 

k2 

0 / K----

/ 
1 
w 

^ 2 

i\ "-2 

-1 
"-1 

Fig. 5 Boundary Conditions for Bevelled Surface. 

Although a step model for the bevelled surface was considered, this 
technique was rejected as such a surface would be extremely susceptible to 
singularities occurring at the re-entrant corners. Consequently, a novel, 
second order difference scheme was developed requiring the introduction 
of two "exterior" nodes, -1, -2, which are the reflection of the nodes 1, 2 
about the bevelled surface. 

In order to approximate the Laplacian operator, V2^0, it is assumed 
that (Greenspan, 1965) 

2 

V20o = E ail*, (23) 
i = - i 
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If Taylor series expansions for 0_2, 0_i, 0i. 02. 03 are performed 
about the point numbered 0 and substituted into equation (23), then the 
Laplacian operator may be expressed as 

V 0O =0o(a_2 + a_i + ao + ai + a2 + 0:3) 
d4>o ( \ 

+ -T—la_2/z-2 + a-1/1-1 ~ a^/ii - 03/11! 

500 ( \ 
+ -r— j^a-2^-2 ~ a - l ^ - l + 0 ^ 2 + «3^2l 

•i 
5*00 

(a_2(/i2_2) + <*-l(/i-i) + «i(/«l) " "3(/»?)) 
& 2 

^ 0 0 C ^ 

^00 
•i , (a_2(*2-2) + a-l(fc2-i) + "2(^2) + <%(%)) 

ofraxQu,*)2] (24) 

The a/ 's may be determined from this system of equations by 
employing Gaussian-Elimination and partial pivoting with back substitu
tion. Although the calculation of the ay's, the "distance factors", appears 
complex, they are only dependent on the inter-node distances and the 
angle, $, of the bevelled surface. 

The ability to model accurately bevelled and multi-bevelled surfaces 
is well within the scope of this technique as the nodes surrounding the cen
tral node may assume arbitrary positions. Furthermore, it may be shown 
that the six point formula (Franz et al, 1983) is merely a special case of this 
general six point scheme (24). 

Solution of the Discretised Device Equations 
The discretisation of the semiconductor device equations yields large 

systems of simultaneous equations with sparse coefficient matrices which 
are ideally suited to iterative solution methods (Snowden,1986). The 
discretised Poisson equation is rearranged to give ifot in terms of the 
potential at the surrounding nodes and is solved using successive over 
relaxation (SOR). The current continuity equation is solved in a similar 
manner, but in this case the relaxation parameter w lies in the range 
0< w<l, a technique known as successive under relaxation (SUR). This 
process is repeated until the solution converges. A flowchart of the com
plete simulation procedure is presented in fig. 6. 

In order to guarantee convergence, these solution techniques require 
diagonally dominant or positive definite matrices. One drawback ot the 
new boundary conditions is that the resulting system of equations is struc
turally unsymmetric. However, convergence using relaxation methods is 
usually possible although the optimum relaxation parameter w must be 
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Fig. 6 Flowchart of Device Simulation. 

determined empirically as this factor is dependent on the shape of the dev
ice domain. 

Simulation Results 
Contour plots of potential and electron density for the coplanar 

hyperabrupt varactor diode (fig, 3) are shown in fig. 7. The doping profile 
employed is that shown in fig. 2 and the Schottky contact is biased at - 3 V. 
The depleted region under the Schottky contact is clearly visible and the 
crowding of the potential contours around the contact indicates the 
extremely high electric fields present. The surface state model pins the 
exterior surface potential at around -0.8 V and the plots highlight the 
non-linear nature of the surface depletion due to the complex, hyperabrupt 
doping profile. 

An investigation into the effects of surface states was undertaken and 
fig. 8 shows the C-V profile of the coplanar varactor with and without the 
surface state model. The marked difference in the two characteristics 
emphasises the importance of modelling accurately the device boundary 
conditions. 

A large signal r.f. analysis was performed at 10 GHz (fig. 9). A 
sinusoidal r.f. voltage was imposed (at - 4 V D.C. bias) and the 

t = t+ t, 
Update 

Contacts 
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Fig. 7a Contour plot of potential for 
the coplanar varactor diode. 
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Fig. 7b Isometric plot of electron density for 
the coplanar varactor diode. 

corresponding current values were calculated at each time step. A har
monic analysis of these waveforms allows the calculation of the device 
impedance. 
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Fig. 9 R.F. Current and voltage waveforms. 

In order to validate the simulation, the C-V characteristics of several 
abrupt junction CXY23 (Philips Microwave) series diodes have been 
determined and a comparison with simulated results is presented in fig. 10. 
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Fig. 10 Comparison of measured and simulated results. 

Conclusion 
The modified finite-difference scheme presented here is capable of 

modelling non-planar GaAs devices with complex doping profiles. A new 
extremely flexible six point scheme has been developed which allows a 
two-dimensional discretisation mesh to be fitted to any user defined device 
domain. The investigation into the effects of surface states on device 
performance has highlighted the importance of considering these effects 
when designing small geometry devices. Analysis of the D.C, and R.F. 
characteristics predicted by the simulation allows the optimisation of the 
geometry and doping profile of the coplanar varactor. Work into the 
validation of the simulation is continuing by comparing both measured and 
simulated results (both R.F. and D.C.) from several non-planar devices. 
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SUMMARY 

Here we study near ballistic transports proper to switching 
operations of GaAs MESFET's with a 0.5 jam gate-length, using a 
multi-particle simulator. The time-resolved distributions of 
electron velocity, electron energy, electric-field and carrier 
density along the channel related with 0N**0FF operations are 
obtained, in addition to time responses of the currents. The 
near ballistic transports proper to the ONoOFF operations are 
significant near the source electrode and underneath the gate. 
The dynamics of the particles in upper valleys which determines 
the switching time is depicted. It is tried to evaluate the 
relaxation times of momentum and energy both from their time 
responses and from the steady state distributions of velocity, 
energy and so on. It is found that the well-known ballance 
equations of momentum and energy underestimates electron energy 
and overestimates electron velocity underneath the gate. 

INTRODUCTION 

Recently a multi-particle simulator, which can exactly take 
into account near ballistic transports in submicrometer gate 
GaAs MESFETs, has been widely applied to evaluation of the 
characteristics. However few reports have been published on 
details of electron dynamics in switching operations, although 
there is only a few papers on calculation of a time response of 
the drain current and a switching time, which were reported by 
Yoshii, Tomizawa, and Yokoyama(1983), and Yokoyama, Tomizawa, 
and Yoshii(1985). It is necessary to publish the details of 
electron dynamics for modelling and further development of a 
more tractable method such as relaxation time approximation, 
which are proposed or simplified by Blotekjaer(1970), Cook and 
Frey(l982), and Stenzel, Elschner, and Spallek(1987). The 
relaxation time approximation will be applied to CAD of the 



306 

SOURCE GATE DRAIN 

0.5 0.5 0.5 
jjm jjm jam 

Fig. 1. Schematic drawing of a MESFET device used in the 
simulation. The small dots denote particles. 

device in the near future, because it does not require big 
computer resources and is able to carry out time-resolved 
calculation without any numerical noise, in contrast to the 
multi-particle simulator. 

In the present paper, in addition to the time responses of 
the currents, electron dynamics in the switching operations, 
such as velocity, energy, electric-field, and carrier density, 
will be depicted in detail. Next the same technique will be 
applied to observation of relaxation processes of energy and 
momentum at some points in the device. Finally accuracy of the 
relaxation time approximation will be discussed through the 
relaxation times. 

MULTI-PARTICLE SIMULATOR 

The multi-particle simulator has been applied to the device 
shown in fig. 1. The doping density of donor is 10 cm and 
lattice temperature is 300 K. The electric-field in the device 
is self-consistently calculated with the particle distribution 
through Poisson's equation. The Monte Carlo technique used in 
the present simulation is followed by Fawcett, Boardman, and 
Swain(1970). Their model for the conduction band is a two-valley 
one. The number of particles in the device is 10,000 at the 
initial step of the simulation. Figure 1 shows a steady state 
distribution of particles in a ON state which are denoted by 
small dots. 

NEAR BALLISTIC TRANSPORTS IN SWITCHING OPERATIONS 

Figure 2 shows a scheme of the switching operation of the 
gate voltage(V ) and the corresponding time-responses of the 
source current!?^) and the drain current(ID). The drain voltage 
(VQ) is 1.0 V. The currents consist of drift and displacement 
currents. The drift component is dominant at the source and 
dram, while the displacement component is dominant at the gate. 
The multi-particle simulator causes large numerical noise in 
the calculated results, especially in the transient data. In 
addition, the currents at the source, gate, and drain electrodes 
are not instantaneously ballanced due to the numerical noise. 
However we can find out features of the transports during the 
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Fig. 2. A scheme of switching operation and the time responses 
of the source current(Is) and drain current(In)-

switching operations. The switching time in fig. 2 is 3-4 psec. 
The figures from fig. 3 to fig. 8 show the time-resolved 
distributions of velocity, energy, electric-field, and carrier 
density just after the switching near the bottom of the channel. 
Here the velocity and electric-field are parallel to the 
channel. 

First let us observe the transports during the ON -> OFF 
operation. For time less than 1 psec, the particles in a lower 
valley in the source side underneath the gate ballistically move 
toward the source due to the negative field more than -10 kV/cm, 
but they do not change into upper valleys, as shown in figs. 3 
(b) and 3(e), due to the rather small amplitude of VQ. Their 
velocity exceeds 4x10 cm/s instantaneously,which is close to the 
maximum velocity of the ON steady state. In the drain side there 
are many particles in the upper valleys in the ON steady state. 
They do not almost change their behaviours during the small 
period in spite of large change of the electric-field there, 
because their effective mass is very large. It takes more than 
3 psec for them to be cooled in to a lower valley. The 
undershoot and overshoot in the time responses of Is and Ip, 
respectively, and the slow variation of In just after the 
overshoot reflect the above transports. 

Next let us see the transports during the OFF^ON operation. 
We observe two kinds of near ballistic transports near the 
source electrode and underneath the gate. The one occurcs at 
about 4.44 psec near the source electrode due to the electric-
field of about 6 kV/cm shown in fig. 5. This transport is shown 
in the enlarged figure of fig. 6. The accelerated particles are 
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Fig. 4. The distributions of average velocity parallel to the 
channel along the bottom of the channel in the ON steady 
state, at 0.73 psec, and at 4.70 psec. 

not perfectly cooled at the source side under the gate. The 
another near ballistic transport starts after about 4.4 psec 
under the gate. The particles in the lower valley which reach 
the source side under the gate are again accelerated by the 
electric-field of about 12 kV/cm shown in fig. 5 and move toward 
the drain ballistically. Their velocity reaches about 7x10 
cm/s as shown in fig. 4, which is fairly larger than the 
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Fig. 5. The time-resolved distributions of electric-field 
parallel to the channel along the bottom of the channel 
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Fig. 6. The distribution of particle velocity parallel to the 
channel near the source electrode. The velocities of 
particles sharply rise in the neighbourhood of the 
source electrode and relax hereafter. 

maximum velocity of the ON state. This accelerating electric-
field decreases as the number of particles coming into the 
region under the gate increases. After about 5.5 psec the 
fastest particles reach the drain edge of the channel under the 
gate. Most of these particles are scattered into upper valleys 
due to inter-valley scatterings. First the generation of the 
particles in the upper valleys occures at the bottom of the 
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Fig. 7. The time-resolved distributions of average energy along 
the bottom of the channel at 6 psec, at 8 psec, and in 
the ON steady state during the OFF H> ON operation. 

channel and then the particles slowly drift toward the drain 
and upward due to their large effective mass. Finally they are 
cooled into the lower valley as they come close to the drain 
electrode. It takes more than 4 psec for their distribution of 
energy to reach the steady state one, as snown in fig. 7. Thus, 
the transports described above are cleary reflected in the 
overshoot and undershoot of Ig and Ip, respectively, and the 
slow variation of In just after the undershoot. 

Thus, the slow responses of IQ just after the overshoot and 
undershoot are responsible for the slow movements of the 
particles in the upper valleys. Perhaps the responses may 
depend on Vn, because the population of the upper valleys 
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increases with VQ. 

Figure 8 shows the time-resolved distributions of carrier 
density along the bottom of the channel. In the ON -> OFF 
switching, the particles in the middle of the channel under the 
gate do not quickly move due to the almost zero electric-field 
there. In the OFF -* ON switching, the particles temporary 
accumulate at the drain edge of the channel under the gate due 
to intervalley scattering, as shown by the dotted line, 
because there are no particles under the gate in the OFF state, 
and the accumulation vanishes as the many particles in the 
upper valleys drift toward the drain. 

RELAXATION OF ENERGY AND MOMENTUM IN THE DEVICE 

Next we have simulated the relaxation of energy and momentum 
in the device. In this simulation, the drain voltage is changed 
suddenly from 1.0V(0N state) to zero. The gate voltage remains 
constant(-0.3 V) during the simulation. 

Figures 9(a)-9(d) show the time-resolved distributions of 
the carrier density, electric field, momentum and energy along 
the bottom of the channel. The electric-field and momentum are 
parallel to the channel. The carrier density, electric-field, 
and momentum quickly relax within 0.7 psec, while the energy 
slowly relaxes. 
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The distributions of particle velocity(a) and energy 
(b) at 0.22 psec after the switching. The velocity 
is parallel to the channel. 

Figures 10(a) and 10(b) show the distributions of velocity 
and energy of all the particles in the device, respectively, at 
0.22 psec after the switching. The velocity is parallel to the 
channel. The particles in the lower valley near the drain drift 
backward by the negative field ballistically. The instantaneous 
increase of the energy shown in fig. 9(d) is caused by this 
particle behaviour. On the other hand the particles in the upper 
valleys hardly change their behaviour in this period. 

Figure 11(a) shows the time responses of momentum at three 
points in the device which are denoted by the solid lines. Their 
energies just before the switching are listed in the figure. 
Although the carrier density and the energy vary somewhat in 
this period, we have estimated the time constants for fig. 11(a) 
taking into account variation of the electric-field only. The 
time constants are shown by the closed circles in fig.12. They 
are smaller than the relaxation time of momentum( Tp) obtained 
from steady state data by an ensemble Monte carlo simulation for 
an uniform electric-field case. The T p is shown by the dotted 
line in fig. 12. Figure 11(b) shows the time responses of 
energy and population of the lower valley. The time responses at 
two points with the almost same energy in the ON state are shown 
together in the figure. As it is considered that the variations 
of the carrier density and the electric-field almost vanish 
within about 0.70 psec after the switching, we have simply 
considered that the time constants in fig. 11(b) correspond to 
the relaxation time of energy. The open circles in fig. 12 show 
the time constants. They qualitatively agree with the solid line 
which are the relaxation time of energy(T£) obtained from the 
same method as the dotted line. 

We have shown the time-resolved distributions of the carrier 
density, the electric-field, the momentum and the energy in the 
relaxation. The present results may be useful for discussion 
about accuracy of the relaxation time approximation cited in 
INTRODUCTION. 
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Fig, 11. (a) The time responses of momentum parallel to the 
channel for a step-like switching of Vp -> 0 at some 
points in the device. The dotted lines denote theo
retical results calculated with the time constants 
shown in fig. 12. (b) The time responses of energy and 
population of the lower vally for the same switching 
as (a). The responses for the two points with the 
almost same energy just before the switching are shown 
together in each figures by the solid and dotted lines. 

TRANSPORT EQUATIONS WITH RELAXATION TIMES OF ENERGY AND MOMENTUM 

It is not easy, however, to study on accuracy of the relaxation 
time approximation directly from the transient simulation. In 
the present work we will simply discuss it from the steady state 
data of the present work. 

It is well known that Blotekjaer(1970) derived transport 
equations for description of near ballistic transports in GaAs, 
and Cook and Frey(1982) developed a tractable set of the 
equations. Their equations are written in steady state as 
follows. 

(1) v = T (eF - M (2 £/3) - (2£/3n)^]nj /m* 

(2) w-V(5£/3) = ew.F - (£-£ 0)/r £ 

Here the notations have usual meanings. The equations were 
derived with the assumptions of the displaced Maxwellian 
distributions and of neglecting the kinetic energy of electron 
drift compared with the thermal kinetic energy. Naturally the 
latter assumption is valid near the source and drain sides away 
from the gate. The contribution of the kinetic energy of 
electron drift to the total energy, however, reaches about 2 0 % 
under the gate in the ON state described in the former sections 
due to the near ballistic transports. 
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Fig. 12, The relaxation times of energy and momentum and the 
time constants evaluated from the time responses of 
energy and momentum. The solid and dotted lines denote 

¥& and T_ obtained from steady state data in an 
ensemble I'-fonte Carlo simulation for an uniform electric 
field case. The open and closed circles show the time 
constants of energy and momentum evaluated from their 
time responses by the simulation, respectively. 

Using the equations and noticing the boundary conditions for 
particle dynamics, let us evaluate T t and T_ from the ON steady 
state through Eqs. (1) and (2). 

First we have evaluated Tg and Tp from the data on the drain 
side of the peak of energy. Although the values of Tf are fairly 
scattered , they are in good agreement with the solid line in 
fig. 12 in the range of 0< £ <~ 0.4 eV. On the other hand, the 
values of T p are considerably small in comparison with the 
dotted line. It is considered that the small values is due to 
the thermal equilibrium condition in the drain electrode. Thus, 
the influence of the drain electrode on Tg is small, but it on 

The situation changes drastically in the source side of the 
peak of energy, namely under the gate. Figure 13 shows the 
values of &-t and d p which are defined by tfg = l-( 5/3) \v • v£/w-/F 
and o<D=l-(2/3)[ 3£/3z+ ( £/n ) 3n/Jz ] /qF„,, respectively. Then T£ 

and zv
 are written by ( £ - £ Q) /{ qvy -IF c*e ) and m*vz/(qF2 o(p ) . 

It is obvious that their negative values in fig. 13 are 
physically meaningless. This means that Eqs. (1) and (2) may 
underestimate S and overestimate w under the gate compared 
with the multi-particle simulation. As the results, Eqs. (1) and 
(2) may overestimate the drain current. It is considered that 
the negative values of ^£ and d„ are caused by the assumptions 
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in the equations. Thus, the equations are not valid or less 
accurate under the gate where the near ballistic transport is 
significant. 

A way to simply improve numerical results on the distribution 
of energy is to use a modified value of Tg larger than the 
original one. The use may make up for the invalid assumptions in 
Eqs. (1) and (2). The influence of the thermal equilibrium in 
the drain electrode on the momentum indicates that careless 
movement of the drain electrode toward the gate, which may be 
useful for reduction of the number of the particles employed in 
the simulation, make the average velocity of particles small in 
the drain side. 

DISCUSSION AND CONCLUSIONS 

We have presented the time-resolved distributions of energy, 
velocity, electric-field and carrier density during the ON -̂  OFF 
switchings, using the multi-particle simulator which self-
consistently simulates the particle dynamics and the electric-
field. In particular we have depicted the near ballistic 
transports proper to the ON -> OFF switchings. In the initial 
period of the switchings less than 1 psec, the near ballistic 
transports of the particles in the lower valley are temporary 
caused by the large local field. The velocities exceed the 
maximum velocity in the DC operation. In the OFF -> ON switching 
there are two kinds of the near ballistic transports at the 
source and under the gate. The slow responses after the period 
are caused by the particles in the upper valleys. Consequently, 
the over-all switching-time is strongly dependent on how many 
particles there are in the upper valleys. 

We have also presented the time-resolved data on the 
relaxation process. The carrier density and momentum quickly 
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relax within about 0.7 psec, while the energy relaxes very 
slowly. In the initial period of the relaxation the particles in 
the lower valley near the drain move ballistically. 

Thus, we have shown that the multi-particle simulator is a 
useful tool for investigation of features of electron dynamics 
and device performance in the switching operation. It has been 
found from evaluation of the relaxation times that Eqs. (1) and 
(2) are less accurate for description of the near ballistic 
transport under the gate. They underestimate the energy and 
overestimate the velocity. The drain current may be over
estimated by them. 
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