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AN EFFICIENT DISCRETIZATION SCHEME FOR THE
ENERGY-CONTINUITY EQUATION IN SEMICONDUCTORS

A. Gnudi, F. Odeh
IBM T. J. Watson Rescarch Center, Yorktown Heights, NY 10598

Abstract: In this paper we discuss a discretization method for the energy equation which
appears in the hydrodynamic model of the semiconductor equations. We exhibir the
robustness of the method through computational resulis obtained for a realistic quarter
micron MOS device.

A new discretization strategy of the semiconductor equations comprising momentum
and energy balance has been proposed in the recent literature {1,2]. The continuous
model, for clcctrons and in steady stale, is made of the following equations:

divD =g (p—n+ N — N7) (1)
div) = gU (2)
p J
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where D = ¢E = — egradg . J = —gnv . U= R — G are the electric displacement vee-

tor, the current density, and the net recombination rate, respectively, while the mobility
and the diffusion coelficient arc given by p = (g/m) 7, D= (kT ) 1, T, being the
momentum-relaxation time. Finally, v is the mean velocity, 7, is the encrgy-relaxation
ume, w= (1/2) mv? + (3/2) k,T is the average energy, and wy, is the equilibrium av-
crage energy.

A discretization technique for the above model has been proposed in [1] as a gener-
alization of the well-known Scharfetter-Gummel (SG) method. The technique has then
been refined and applied to two dimensional simulations on a triangular grid [2]. In the
procedurc presenicd here, Poisson’s and momentum-continuity equations are
discretized as in |1} and [2], whereas the cnergy-continuity equation is treated in a
different manner. This is duc to the following obscrvations:

®  The cnergy-continuity equation (4) contains the unknown electron temperature
7 at the LHS in both a “diffusive’ term (the one proportional to grad 7) and a
“drift” term {(the onc proportional to 7). Hence, this equation is structurally
similar to the drifi-diffusion cquation for the current density and, indecd, when
the cocfficicnt of the drift term becomes large, it may exhibit the same
discretization problems unless the grid is prohibitively refined. This i1s cspecially
truc when solving very small devices, where velocity overshoot is 1o be expected.

®  The forcing term at the RIS of (4) is E « J, hence special care is necessary 10
discretize it. This is because, as is well known, the SG scheme does not provide a
unique definition ol the current density in the interior of the grid elements, which
renders the evaluation of the cxpression E » J ambiguous.

In this paper we address the above problems and propose the following solutions. By
remembering the cxpression of the average energy and of the current density, we re-
write Eqg. (4) as
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Following the SG scheme, Eq. (6) is first projected onto cach grid side, say s, , to yicld

J
dT i 5
S,! =—K T -7 ( > k,;T) . (N

Eq. (7) is then integrated along the side, assuming that both projections §, and J,, are
constant and replacing « with a suitable average «,, . This results in

K/
S, = = — [ Bl )T, - Bl=c)T]. (8)

i
i

where £ is the Bernoulli function and «,, = — (5/ 2k, (1 /) (S,i,//qi) . Eq. (8) above
is sometimes referred to as an “exponential fitting”™, and is structurally similar to what
is found by treating the momentum-continuity equation via the 8G method. One may
also regard it as a form of “upwinding” scheme used in moderately high Reynold's
number flows. The problem of the exponential fitting for the carrier temperature had
also been addressed in [2]. but a specific form for the thermal conductivity was as-
sumed there. Due to this, the expression of S turned out to be less general and more
complicated. Morcover, the integration along the side could be carried out in closed
form only after assuming a specific behaviour of the clectron concentration along the
side.

In the examples presented here, the thermal conductivity « has been expressed by
means of the Wiedmann-Franz law, whose average on the side 5, yiclds

k,=<e>=(5/2+) kD, <n> . ()

In IZq. (9), D, is the average of the diffusion cocflicient, which is a smooth function as
shown in [3,41 The clectron concentration n, on the contrary, can be a rapidly varying
function over some clements. Due to this. we have investigated both the dependence
of the convergence rate and the sensitivity ol the solution on the particular way of
cevaluating < 7> . It was found that the way of averaging »# plays little role on the
solution. whereas the fastest convergence rate was given by cither a lincar or an expo-
nentinl average.

Ax Tar as the second point above is concernced, the proposed discretization scheme for
F s J is based on the simple vector relationship

E e J = — divigJ) + gdiv) (1o

which, remembering Eq. {2), leads to the Tollowing form of the encrgy-balance
cqualion

5
. . , N . " J

dvS = — div{gd) + (gg — w)U —n —;——) + div —yv—? - . (n
B 2 n" 1

Then, the discretized Torm of the RS of Eg. (11) reads
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where suffix 7 refers to the ith node and @, is the area of the ith box. It is worth men-
tioning that (12) does not involve the problem of computing the current density J in the
necighborhood of the 7 th node; rather all the physical parameters appearing in (12) arc
cither nodal values of scalar quantities or projections of the current density over the
sides emanating from the ith node.

Figs. | and 2 show a 3-D plot of the eclectron concentration and of the normalized
electron temperature in a 0.25 um FET biased with Vo= 2.5 Vand Ve = 2.5 V (dif-
ferent viewpoints have been chosen for the sake of clarity). 1t is clearly seen how the
clectron concentration at the drain end of the channel is spread toward the bulk, duc
to carrier heating and, consequently, to enhanced diffusivity. Consistently, Fig. 2 ex-
hibits a temperature ridge in the vicinity of the metallurgical drain junction and in most
of the channel region. As can be secn, ncar the semiconductor-insulator interface the
clectron temperature is rather smooth at this refinement level, and is well described up
1o the drain end of the channel. This confirms that the schemes adopted for the
discretization provide satisfactory resulls, so long as the grid is properly refined. A
ripple can be seen, on the other hand, in the deeper portion of the temperature ridge,
corresponding 1o the drain-bulk junction, and is due to coarseness of the grid. Duc to
the difficulty of a priori foresceing the regions where intense refinement is required, an
adaptive scheme basced on temperature variation is necessary. Experiments are cur-
rently in progress in order 1o combine the solution of the semiconductor equations with
such an adaptive refincment scheme.
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