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SUMMARY 

Various approaches to the computation of an error indicator 
for semiconductor device simulation are reviewed, and an error 
indicator closely related to the box method is presented. 
Practical aspects of a self-adaptive scheme such as mesh 
generation and interpolation are briefly discussed. And an 
adaptive scheme which uses the above concepts is demonstrated 
for a p-n diode, a MESFET and a MOSFET. 

LIST OF SYMBOLS 

\p Electrostatic potential 
n,p Electron and hole density 
u , u Electron and hole mobilities 
n p 
e Total permittivity, z=t^t_ 

R Recombination-Generation rate 
N , N donor and acceptor densities 

D Doping density D=(NA~N )/n,, where n. is the 

intrinsic density 
£ Domain of a device 
3S Boundary of Q 
| | | . | ||Q Energy norm 

(u,v) Inner product, (u,v) = u.v dS 
U J Q 

||.||a L2 norm, ||u||s= (u,u)a 

All the parameters which appear in this paper; \p, n, p, D, J , 

J and E are normalized according to the DeMari's scaling, with 

the exception that all the space dimensions are scaled with 

respect to X, // e , where X. is the intrinsic De'byelength. r in r in " 
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1. INTRODUCTION 

The importance of adaptive refinement in the context of 
semiconductor device simulation is self-evident. It frees the 
user of the device simulation programme from the confines of 
designing and refining a mesh according to the device physics. 
In adaptive refinement, however, it is the solution of the 
device equations which dictates where the mesh should be fine 
and where it can be coarse. This decision is based on the 
computation of the error indicators. An error indicator is a 
measure of the solution error restricted to an individual 
element. All error indicators are computed using the available 
solution and prior to each stage of the grid refinement. The 
error indicators are, thus, a-posteriori. After each solution 
stage all error indicators are computed and those elements with 
the largest error are refined according to Fig. (1). 

Figure 1- Refinement of element 'k' 
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Figure 2 - A Self-Adaptive Cycle 
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Grid refinement is proceeded by the interpolation of the 
available solution onto the new grid, which serves as an 
initial guess for the next solution-refinement stage. This 
cycle of solution-error check-refinement is shown in Fig. (2). 
Our emphasis in this paper is on the latter stages of this 
cycle, namely, the error indication, meshing, and the 
interpolation aspects of the refinement. 

Published works on adaptive simulation of the semiconductor 
devices are rare and sparse. Those that we are aware of, are 
either based on computing the error solely for the Poisson 
equation (Guerrieri et al 1983), or are heuristic (Armestrong 
et al 1986), or are difficult to compute (Markowich 1986). 
Although recent advances in obtaining practical error 
indicators have influenced the related field of computational 
magneto-statics (Fernandes et al 1988), but the implication of 
such methods in device simulation is not clear. This problem is 
mainly caused by the fact that the semiconductor device 
equations form a coupled system and the continuity equation is 
not discretized by a standard finite element (FE) approach. 
In this paper we attempt to address this problem, where in the 
next section we present two approaches for error computation in 
semiconductor device simulation. The first, which is discussed 
in some detail in Deljouie-Rakhshandeh and Deeley (1988), is 
briefly reviewed here. The second approach which has the 
flavour of a box method, is simple to compute and easy to 
understand. In section 3 we also discuss the meshing and 
interpolation schemes used in this exercise. Our grid 
generation/refinement approach is aimed at creating an equi­
angular triangulation, whereby the nodes belonging to the 
different stages of refinement do not coincide. We, therefore, 
discuss an interpolation algorithm which is used in the course 
of interpolating the results from one grid layout to another. 
In the last section, we provide computational examples using a 
p-n diode, a MOSFET, and a MESFET to examine our adaptive 
approach. 

2. ERROR INDICATION 

The setting for this work is the semiconductor device 
equations, which after appropriate normalization read: 

(la) -V. (e v» = p-n-D in Q, 

(2) 7. (-u nv> + Vn) = R in 9, 

(3) v. (u pv> + Vp) = R in Q. 

Eqn.(l) is the Poisson equation and (2) and (3) are the 
continuity equations for electrons and holes. The expressions 
enclosed in brackets in Eqn(2) and (3) are the corresponding 
current densities: 
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J = -u nV$ + Vn, 
n n 

J = -y pv-* - Vp. 
P P 

The Poisson equation is discretized by standard FE method where 
Q is partitioned into a set of triangles and a piecewise linear 
trial space S, is employed for polynomial interpolation. Let 

the Poisson equation, (la), support the following boundary 
conditions: 

er 3H = * o n 3BN< 

* = *D on BSp, 

where 92 = 9$iUU 3S\, is the boundary of Q. A first solution to 

Eqn.(l), \ji = ~ty V, (4» is the vector of the nodal values, and 

ty, , V, £ S, ), is obtained for a coarse grid. \k satisfies the 

discrete weak form of Eqn.(l): 

(4) E k < W V o = E k «P-n+D),Vh) 
k̂ 

E k J g-Vhd352 , 
9Qlf 3SN 

where 9, is the area of element 'k' and 3P-, its boundary. The 

vector V, is the basis or shape function in the context of 

Galerkin method. 

To compute an error indicator another piecewise polynomial 
space, S , on the triangulation is introduced, where S 

contains piecewise quadratic polynomials. The error in the 
electrostatic potential is then approximated as: 

e , = $„ - *,, ; where <|/ g S and y £ S, . 
ip q n q q h h 

and the error is commonly measured in energy norm: 

The error indicator is the restriction of the above norm to an 
element 'k': 

ik= IM%IM2V 
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By employing the concept of hierarchical FE (Zienkiewicz and 
Craig 1986), an error indicator suitable for the Poisson 
equation and applicable to triangular grids has been suggested 
(Deljouie-Rakhshandeh and Deeley 1988): 

(5) n l k = (3hk /5er>J (n"P-D>2 dS + 

(/ 3 h./12e ) v k r 3V 
where h, is the element diameter and [e 3\|/,/3n]. is the jump 

discontinuity in the component of the electric field normal to 
the element side. Eqn.(5) is not easily applicable to the 
continuity equations, but we have observed that the energy norm 
in e , is related to the L„ norm of the error in the electric 

field: 

I M e ^ l l l ^ - e r M e E M 2
V 

and this was the setting for computing, ||e || , the L„ norm 

of the error in the current densities. In the Shrafetter-Gummel 
FE discretization of the continuity equations, the current 
density and the electric field on each element is assumed 
constant (Zlamal 1986). Despite this assumption, the final 
formulation leads to current densities whose nodal values 
differ on each element. The finite elements in this approach 
are more suited to the nodal assembly and a box interpretation 
of this leads to the much used method of control areas. In 
Deljouie-Rakhshandeh and Deeley (1988), ||e || was computed 

k 
by first approximating a constant element current density: 

<6> J0 = ( Er=l j A ) ' \ for V r̂=l V 

where i are the nodal values of the current densities, and A Jr r 
are the area segments according to Fig.(3). Using the well 
known expression of Sharfetter and Gummel an edge current 
flowing from node 1 to node 2 was defined: 

JE,3= V n 2 B(621> - - L B C S ^ J / V 

where 6?.= IjL- vL and B( 6) = [ S/(exp( 8)-l) ]. Using a linear 

vector basis function, the edge currents were interpolated 
within each element (Van Welij 1986): 
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(7) jk(x,y) = £3
U1

 J
E ? r y ( y r - y ) i + (*-x

r> J ] / 2 V 

The error in the current density was therefore approximated 
by: 

k k 2 
(8) e J = J (x,y) - JQ , and hj k= 

'V 

Figure 3- An element with its geometric and electric attributes 

We now seek an alternative approach to treat the error in 
all the three semiconductor device equations consistently. 
First, consider the standard discretization of the Poisson 
equation with S, as the trail space. Eqn.(4) leads to piecewise 

discontinuous constant electric field: 

E n = E k E* ; k-1,2, No. of elements, 

where E~ is constant inside element 'k' and zero outside. To 

obtain a better approximation to the electric field the 
projection method can be employed (Zienkiewicz and Zhu 1987), 
where the electric field is expanded by the same basis 
functions as the electrostatic potential: 

where V, 

V h E ' 

1 2 

<V V 
,vj^)t and E = ( E r E2, t E ) l , 

' n 
the total number of the elements, and E, satisfies: 

(9) [ v} (Eh- E ) dQ = 0 . 

IS 

The nodal values of the electric field, E,, can be computed by 

solving the n by n linear system resulting from Eqn.(9). 
Alternatively, evaluating all the integrals in (9) by nodal 
quadrature leads to the simple concept of nodal averaging which 
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is explained below: Consider a patch of elements, supp(i), who 
share a node 'i' as shown in Fig,(4). The shaded region which 
is defined by the area allocations of Fig.(3) is call a 'box' 
whose area is b.. 

Figure 4- An Element Patch for the Node 'i' 

The nodal averaging for this configuration reads: 

do h-{ Y^ E o A i ) / b i ' v E Ai ' 
kesupp(i) kesupp(i) 

where A, is the area contribution of element 'k' to the box 
l 

'i'. An error indicator can now be defined as: 

and estimating (11) again by nodal quadrature leads to: 

(12) < k = £i I<V *Q>-<V
 E0>1 Ai • 

where i belongs to the node set of element 'k'. The error 
indicator of Eqn.(8) can readily be used in the context of the 
box method, and a similar error indicator for the current 
densities can be presented: 

<13> <k=" e j l l a - £ i [ ( V J o ^ - < V J o P ] 4 • 

where J. is the approximated nodal current density calculated 

k 
in similar fashion to E. , and J„ is the constant element 

current density calculated as in Eqn.(6). 
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A comparison between the two error indicators, Eqn.(8) and 
Eqn.(12), for the continuity equation is instructive. In 
Eqn.(8) we exploit one main feature of the Sharfetter-Gummel FE 
discretization of the continuity equation in 2-D; that is the 
inequality of the nodal values of the current densities on each 
element. Since this feature of the S-G method is caused by the 
presence of the diffusion term in the continuity equation, for 
diffusion-free currents Eqn.(8) yields zero error. This is 
demonstrated by a simple experiment conducted on an L-shaped 
resistor. Here, there is a singularity at the vertex of the 
convex angle where the current densities increase in magnitude 
(Fig.(5a)). Starting form the coarse mesh of Fig(5b) the error 
indicator of Eqn.(8) yields zero error on all the elements, and 
the mesh remains unrefined. Using Eqn.(12), however, a non-zero 
X] , is measured for all the elements and three refinement 

cycles create the mesh shown in Fig.(5c), which reflects the 
variation of the current densities in the vicinity of the 
singular point. 

Experiments with an adaptive strategy based on Eqn.(5) and 
(8) are presented in Deljouie-Rakhshandeh and Deeley (1988). 
Here, we concentrate on the use of Eqn.(12) and (13) as the 
principle error indicators. For a semiconductor device an error 
indicator should contain three components; one arising form the 
error in the Poisson equation and the other two from the error 
in the continuity equations. Various schemes can be devised to 
merge all the error contributions from Eqn.(12) and (13) into a 
refinement strategy, we have found a simple summation of the 
normalized error indicators useful, since it is compact and can 
easily be implemented in our refinement strategy. 

<14> \= nE,k S 1 + *J ,k Cf + *J ,k CJ_1-
n' n p p 

where CE= 3 M a x d i ^ , r ^ , ..., n ^ ) , 

CJ = 3Max(hJ , Y, 2, .... nj >, 
P P P P 

C. is similar to C. , and 'n' in Y\ is the total number of 
n p ' 

elements. The above constants normalize the error indicator, 
such the value of ru on no element is greater than unity. 

2. MESH GENERATION AND INTERPOLATION ASPECTS 

The mesh generator employed in this exercise aims at equi­
angular triangulation and the resulting grid possesses very few 
obtuse triangles (Deljouie-Rakhshandeh 1988). This is achieved 
by extensive side-swapping and mesh-smoothing. In side-swapping 
the side subtending an obtuse angle is replaced by another 
bisecting it (Fig.(6)), and in mesh smoothing a node is moved 
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(a) Variation of the Current Densities. 

(b) Initial Coarse Mesh. 

(c) Refined Grid. 

Figure 5- Grid Refinement for an L-Shped Resistor. 
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to the centre of gravity of the polygon created by its adjacent 
nodes (Fig.(7)). 

Figure 6- Side-Swapping Figure 7- Mesh-Smoothing 

Side-swapping and mesh-smoothing are performed at high speed by 
exploiting the adjacency information which the mesh generator 
creates. These are the Node-Node adjacency (NN) list which 
holds the list of those nodes adjacent to any one node, the 
Node-Element adjacency (NE) list which holds the list of those 
elements sharing a particular node, and the Element-Node 
adjacency (EN) list which holds the node number of the vertices 
of a particular element. Each refinement stage is proceeded by 
side-swapping and mesh-smoothing, which implies that the nodes 
on the newly refined grid, say G , do not coincide with the 

J & ' new 
nodes of the previous grid, G , ,. In order to create an initial 

v old 
guess for <//, n, and p on the new grid a point location and an 
interpolation process has to be performed. Our fast point 
location algorithm is constructed around the Element-Node 
adjacency list, EN(k,i), where it returns the node number of 
the i vertex of element 'k'. The list is ordered and counter­
clockwise, hence, an edge E(EN(k,l), EN(k,2)) is a directed 
edge which originates from the 1st vertex, terminates at the 
2nd, and has the area of the element to its left. the search 
for an element k g G , , which encloses a node S£G is 

old new 
performed by the following procedure: 

Procedure LOCATE(k,S) 
for i:=1,3 do 

j:=i+l ; if j>3 then j:=l; 
if S lies to the right of E(NE(k,i), NE(k,j)) then 

find element k' which shares 
E(NE(k,i), NE(k,j)) with k; 
k:=k' ; LOCATE(k.S); 

Upon entering the procedure LOCATE, S3 is partitioned into a set 
of convex subregions and an arbitrary element 'k' is selected 
within the subregion which contains S. On exit 'k' is the 
desired element. 
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Various interpolation scheme can be used to approximate the 
value of *J>, n, and p at S. A linear interpolant over each 
triangle is the simplest choice, but not necessarily the best. 
A more elaborate interpolation scheme based on the quadratic 
Bernstein polynomials is attractive. Although the computational 
cost of a non-linear interpolant is greater, but the trade off 
in terms of the overall solution time is favorable, since non­
linear interpolants can provide a better initial guess for each 
solution stage. In particular, solving the device equations in 
a coupled mode, we have experience a reduction of about 10% in 
computation time, when switching from a linear to a quadratic 
Bernstein interpolant. 

A function, ' f , whose nodal values on element 'k' is known 
can be expanded by the Bernstein polynomials: 

(15) f(L1,L2,L3)= J^ " I T j i i r L! L2 L3 Pijm • 
| r |=3 

where L., L„, L. are the normal area co-ordinates with respect 

to element 'k', the integers i,j,m can take values between 0 
and 2, |r| =i+j+m , and the coefficients 0. . can be computed 

using the nodal values of 'f and its first derivatives, ' Vf . 
There are ten such coefficients (Frain 1986), nine of which are 
independent (P-,-,-. is expressed in terms of the other nine 

coefficients). To interpolate the value of 'f to a point S in 
element 'k' one needs to consider a patch of elements as shown 
if Fig.(8), 

Figure 8- A Patch for the Computation of Bernstein Polynomials 

where by exploiting the information stored in the NE list, 'Vf 
is computed for all the elements sharing a vertex with 'k' and 
using an equation similar to (10) the nodal values of ' Vf is 
computed. Since the nodal values of 'f are also available, 
after appropriate co-ordinate transformation Eqn.(15) yields an 
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Figure 9- Interpolation for a randomly valued function: 
(a) Linear Interpolation, 
(b) Quadratic Bernstein Interpolation. 
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approximation to 'i' at the point S. We demonstrate the 
Bernstein interpolation by selecting a function randomly valued 
at the nodes of a triangular grid. The function after linear 
interpolation is plotted in Fig.(9a) and the smooth surface of 
Fig.(9b) is generated by the Bernstein interpolation scheme, vj>, 
n, and p are also interpolated in the same fashion, where 
interpolating for the electrostatic potential the nodal values 
of vj/, and for electrons and holes the nodal values of log(n) 
and log(p) are used. 

3. EXAMPLES 

We demonstrate our adaptive scheme by means of three 
examples, namely, a p-n diode, a MESFET and a MOSFET. In 
accordance with the discretization of the device equations, the 
error indicator used here is based on the box method (Eqn.(12) 
and (13)). 

3.1 p-n Diode 

In a p-n diode current densities dominantly flow 
perpendicular to the layer region at the p-n junction, and are 
smooth functions (Markowich 1986). The contribution from the 
continuity equation to the error indicator of Eqn.(14) is, 
therefore, small and Eqn.(12) is solely used to measure the 
error. We have conducted a numerical experiment on a p-n diode 
with elliptically rotated Gaussian profile, bulk density of 

1 " 7 _ 0 1 ft _^ 

N =10 Cm , and a peak donor density of Nn=10 Cm . Starting 

from a coarse mesh after 6 refinement cycle the grid of 
Fig.(10) is obtained. The refinement was performed close to the 
breakdown voltage, and it was noticed that the breakdown 
voltage is quite insensitive to the refinement in the depletion 
region (see Table 1). 

TABLE 1- Grid Refinement Versus Breakdown Voltage 

Refinement Stage 

No. of Elements 

Breakdown Voltage 

1 

136 

18.63 

2 

180 

18.41 

3 

238 

18.07 

4 

296 

18.06 

5 

403 

18.02 

6 

549 

18.02 

This phenomenon can be explained by recalling that the current 
densities play an important role in the breakdown process, and 
since current density in a p-n diode is a smooth variable, it 
can be resolved by a mesh layout of moderate density and still 
yield accurate terminal characteristics. 



542 

n 

10 urn 

i 

Figure 10- Grid Refinement for a p-n Diode. 

Figure 11a- MOSFET Grid after 7 refinement Cycles. 
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3.2 MOSFET'S AND MESFET'S 

In MOSFET's and MESFET's the current densities exhibit a 
layer behaviour, since they flow parallel to the layer region 
which is formed in the vicinity of the Shottcky contact for a 
MESFET or at the interfacial region of Si-SiO, in a MOSFET. 

This behaviour is more pronounced in MOSFET's, where the width 
of the conducting channel can be a few tens of Angstrom. 

An error indicator for such devices should, therefore, 
contain the error contribution from the continuity equation. 
Hence, Eqn.(14) is used to measure the error for each element. 
A numerical experiment was conducted on an n-channel MOSFET 
with a 1 um metallurgical gate. The junction depth is 0.17um, 
the oxide thickness is 500 A and the bulk doping is 

i ft — ^ 
N.=10 Cm . The refinement was performed at V =2.5 Volts and 
A gs 

V, =1 Volts. After 7 refinement stages the grid of Fig.(11a) 

was obtained, where the number of elements is 3413. The grid is 
well refined in the channel and resolves the layer behaviour of 
the current densities. There is also some refinement in the 

depletion region of n -p (See Fig(llb)), which reflects the 
structure of the solution. 

The MESFET chosen for the second expriment is a recessed 
gate GaAs MESFET having an active layer thickness of 0.4 um, 
and the gate length of 0.75 um. The Shottcky barrier height was 
chosen at 0.6 V, and a Gaussian profile was defined with the 

17 -3 
peak at N =2.5x10 Cm located at the depth of 85nm. Six 

refinement cycles were performed in the saturation region 
(V, =4.5 V) and at zero gate voltage. Starting from the initial 

grid of Fig.(12a), and after five refinement stages the refined 
grid of Fig.(12b) is achieved which possesses 2716 elements. It 
can be seen that the area in the vicinity of the Shottcky 
contact is well refined. The refinement is also denser on the 
drain side where the channel is pinched off and current 
densities rapidly vary. 

Table 2 shows the effect of the refinement on the normalized 
drain current for these two devices. The currents are 
normalized with respect to the drain current computed at the 
last stage of the refinement, the drain current for the MOSFET 
is very sensitive to the refinement even in the later stages of 
the adaptive cycle. This is due to the fact that the current 
densities are confined to a very thin conducting channel and 
exhibit strong layer behaviour. 
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TABLE 2- Normalized Drain Current Versus Refinement 

Refinement Stage 

MOSFET Ij/I, -, 
d d,7 

MESFET I ./I, -, 
d d,7 

1 

1.09 

0.92 

2 

0.96 

0.95 

3 

0.71 

1.02 

4 

0.89 

0.99 

5 

0.93 

1.00 

6 

0.96 

— 

7 

1.00 

-

Table 2 also suggests that, unlike MESFET's, accurate current 
calculation for MOSFET's require a very dense refinement and a 
large number of elements. This is especially true for the 
meshing strategies based on equi-angular triangulation. 
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