
497 

SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol, 3 
Edited by G. Baccarani, M. Rudan - Bologna (Italy) September 26-28,1988 - Tecnoprim 

Automatic Grid Generation for 
3d Device Simulation* 

Paolo Con t i t Wolfgang Fichtner* 

In t eg ra t ed Sys tems L a b , E T H Zurich, Swi tzer land 

Abstract 

The concepts of an automatic 3d grid generator for the solution of the 
semiconductor equations are presented. The grid generator allows to mix 
elements of different shapes. An algorithm for the refinement of a grid 
according to a given point density function is outlined. Local heuristics 
for the improvement of the quality of the elements with worst aspect ratio 
obtained during the refinement are discussed. The data structure used 
to represent the grids is a boundary representation optimized to retrieve 
the neighborhood informations used in finite element assembly. Points and 
elements can be added and deleted in constant time. 

1 Introduction 

Silicon devices are inherently three-dimensional (3d) structures. While for many 
problems the behaviour of devices can be modeled in either one or two dimen
sions, for MOS devices with aspect, ratios close to one, complex latchup struc
tures or DRAM cells 3d simulation becomes necessary. The numerical solution 
of the semiconductor equations has been recently studied by various authors. 
They chose to solve the equations either with the Finite Differences (FD) method 
[1,2,3/1] or with the Finite Elements (FE) method restricted to prismatic ele
ments [5], None of these authors did worry about 3d grid generation, since FD 
operate on a rectangular grid while prisms for the FE method can be gener
ated through a triangulation of the plane and a replication of the triangulation 
in the third dimension. The drawback of these methods resides in the serious 
limitations both methods impose on the device geometry. 

In contrast to the above approaches, the device simulator under development 
at our laboratory allows the simulation of arbitrary 3d structures. In this paper, 
we describe ideas underlying the grid generator for this simulator. The grid 
generator must tcsscllate any 3d domain according to a. given point density 
function. The tessellation process must be fully automatic, since 3d grids are 
far too complicated objects to be modified manually. 

'this work was supported by Siemens AG, Berlin und Munclicii 
'address of the authors: Institut fur Intcgrierte Systeme, ETH-Zcntrum, 8092 Zurich, 

Switzerland 



498 

The paper is organized as follows: In section 2, we describe the particular 
problems of the grid generation due to the peculiarities of the device equations. 
We summarize the grid qualities required for successful simulations. 

In section 3, we show how well-known techniques for the local refinement of 
2d tr iangular grids can be generalized to the 3d case. Then we describe the grid 
refinement algorithm implemented in our code. 

Section 4 addresses the impact of the chosen da ta s tructure on our grid 
generator. In part icular , we show how it allows to mix different element types 
and what properties make it suited for the exploration of new grid generation 
algorithms. 

In section 5, we shall discuss the current implementation of our grid gener
ator . 

2 Requirements to FE grids for 3d device simula
tion 

The correct allocation of the spatial grid is a crucial issue in device simulation. 
This is particularly true for 3d simulations. Since the different parts of a device 
have very different electrical behavior, the point density must be very high in 
some regions, while a much coarser grid suffices in the remaining part of the 
device. On the other hand, the simulation time depends directly on the number 
of grid points; since 3d problems lie on the edge of todays supercomputers 
capacity, great care must be taken to avoid the insertion of redundant points. 

For a successful simulation, the generated elements must fulfil several re
quirements: the aspect rat io of the elements, i.e. the relation between the 
lengths of the longest and shortest edge, should not be greater than a given 
upper bound (typically 4 to 10). As a consequence, we must pass from very 
dense regions to coarser regions in a smooth way, avoiding steep point density 
gradients. Moreover, obtuse angles should be avoided as much as possible, since 
they cause two kinds of problems: They exacerbate any inherent roughness in 
the solution, and they can inhibit the convergence of the solution scheme. While 
recently proposed discretization techniques [6] permit to avoid the lat ter prob
lem, the problem of the inherent roughness still requires to avoid very obtuse 
angles as much as possible. 

The choice of element geometries best suited for device simulation is still an 
open question. While tetrahedra allow to model very general geometries, they 
inherently cause an inflation in the number of generated elements. Experience 
will show whether this decreases the efficiency of the simulation process, since the 
number of linear equations to be solved depends only on the number of points 
of the tessellation, and not on the number of elements. On the other hand, 
tcsseilating a large area of the integration domain with bricks, using te t rahedra 
and prisms only to model the irregular boundary regions and the regions where 
we pass from high to low point densities, may accelerate both the grid generation 
and the assembly of the linear system to be solved. 



499 

3 Local refinement of 3d tetrahedral grids 

Given a point density function defined over an integration domain, there are two 
basically different approaches to generate a corresponding grid. One method first 
defines the location of the points in the domain; then the elements connecting 
these points are constructed. A good candidate tessellation is the Delaunay 
triangulation of the given points [7], since it guarantees positive effective cross 
sections of the mesh lines, as required by the Scharfetter-Gummel method. Un
fortunately, the Delaunay parti t ioning of the device to be simulated has serious 
drawbacks: the computation of the parti t ioning is expensive for a large number 
of points (we est imate the number of points necessary for real-world simulations 
to be of the order of 50000); moreover, the Delaunay parti t ioning may generate 
elements ranging over regions of different materials, a new source of errors in 
the simulation. 

With the second method, a coarse grid is first generated according to the 
device geometry. Then, all elements found too coarse according to the given 
point density function are refined via the addition of new points on their edges. 
Finally, all elements on which new nodes (so-called green nodes) where added 
during the previous step are refined. The process is iterated until all elements 
fulfil the given density condition or until a certain iteration depth is reached. 
Since this approach has been used successfully in several 2d FE codes [8,9], we 
have generalized it to tetrahedral elements for our prototype implementation. 

In 2d, coarse triangles are refined via the addition of a new point at the 
midpoint of each edge. A triangle is divided in 4 similar triangles, thus the 
quality of the elements does not deteriorate at this step. In 3d, we add an 
additional point on each edge of a coarse tetrahedron. Then we chop off the 
four tip te t rahedra of the original element (Figure 1). These four " t ips" are 

Figure 1: Refinement of a coarse tetrahedron . 

similar to the original element. Finally, the remaining octahedron is divided in 
four te t rahedra via the insertion of an additional edge (one of the three diagonals 



500 

of the octahedron). As the resulting tctrahedra are not similar to the original 
element, this step leads to an unavoidable quality decrease of the tessellation. In 
order to keep this deterioration small, we add the diagonal with length closest 
to the average of the edge lengths of the octahedron. 

The triangulation of the neighbors of refined elements is significantly more 
complicated in 3d than in 2d. In 2d, a triangle with an additional point on 
one, two or three of its edges can easily be subdivided in triangles. But in 
3d, in addition to the points which where added in the middle of some edges, 
new edges may have been added on the surface of the tetrahedron during the 
refinement of its neighbors. In general, the resulting tetrahedron cannot be 
triangulated without the addition of new points. As an example, consider the 
tetrahedron T of Figure 2. The tetrahedron sharing the right face of T has been 

Figure 2: Refinement of a tetrahedron with green nodes 

properly refined; hence, three new points and three new edges where added on 
the right face of T. Moreover, one tetrahedron incident in the lower left edge 
has been refined; an additional point was added this way on this edge of T. 
The te t rahedra incident in the three other faces of T have already been refined, 
taking into account these new points. Five new edges were added on the surface 
of T during this process. As a result, T cannot be triangulated without the 
addition of new points; we can chop off the tip tetrahedra in the front and right 
corner of T, but the remaining octahedron (Figure 2) cannot be tr iangulated. 

In our code, wc tr iangulate tetrahedra with green nodes as follows: First 
the hull is tr iangulated. Then, all tip tctrahedra are chopped ofF Finally, an 
additional point is added in the center of the remaining convex polyhedron, and 
additional edges and faces are added to join this new vertex with each of the 
vertices and edges of the polyhedron. Any tetrahedron with green elements 
can be tr iangulated that way. In general, the resulting tc t rahedra have a worse 
aspect ratio than the original. 

We can summarize our triangulation algorithm as follows: 



501 

Generate initial triangulation; 

Collect coarse tetrahedra; 

repeat 

Divide coarse tetrahedra by halving their edges; 

Refine tetrahedra with green knots, adding a knot in 

the center if necessary; 

Collect coarse tetrahedra among new ones; 

until All elements are fine enough; 

4 Enhancement of the grid quality 

During the refinement process of a triangular grid, new elements with bad aspect 
ratios are generated, in particular in the regions where the point density varies. 
In 2d, point smoothing and edge smoothing techniques have been successfully 
applied to enhance the overall quality of grids [8]. In the first case, points are 
moved around a little, without modifying the topology of the triangulation. 
Given a badly shaped triangle, one (or more) of its vertices is moved in order to 
increase the quality of this triangle. A common approach is Gaussian smoothing, 
where a, point is moved to the geometrical center of all its topological neighbors. 
Figure 3 illustrates the effect of point-smoothing in the 2d case. 

Figure 3: Point smoothing in 2d 

The method can be generalized directly to the 3d case. It must be applied 
very carefully, since it tends to regularize the grid and thus to move the points 
away from where they are actually needed. In general, one or two iterations over 
all bad elements can be performed. 

During edge smoothing, no point is moved; only the topology of the grid is 
modified. In 2d, edges are swapped if the sum of opposite angles in a pair of 
triangles exceeds 180°. By flipping the diagonal, the sum of opposite angles is 
made less than 180°, llius insuring better convergence of the Scharfetter-Gummel 
discretization. Edge-smoothing can partially be generalized to 3d. Consider the 



502 

two tctral icdra in Figure 4: they can be replaced by three te t rahedra with better 
shape, adding the edge which connects the top and bot tom vertices; the common 
face of the two te t rahedra is replaced by three new faces incident in the new 
edge. The operation is reversible. 

Figure 4: Edge smoothing in 3d 

Notice tha t two tetrahedra can be traded for three new ones only if the 
new edge lies within the their common face. Figure 5 shows an example where 
two badly shaped elements cannot be replaced by three bet ter ones without 
modifying the hull of the two elements. 

Figure 5: No edge smoothing can be performed 

We do not know yet the exact general properties of a 3d triangulation after 
edge smoothing has been consequently applied. It is nonetheless obvious that 
the method allows to improve the quality of a 3d triangulation in linear t ime. 



503 

Therefore we plan to integrate it in our code shortly and to measure its impact 
on the convergence behaviour in simulations of different structures. 

5 Data structure 

The data structure used to store the grid during the generation and refinement 
process must suffice to different constraints. As stated above, we plan to use 
mixed element types (in particular tetrahedra, prisms and parallelepipeds) in 
our simulator. Moreover, since the grid must be modified incrementally, the 
insertion and deletion of new points, edges etc. must be doable in constant 
time, i.e. without a sweep over the entire data structure. 

We have chosen to base our grid generator on the Hexblock data structure 
[10]. Hexblocks permit to represent any tessellation of a 3d domain by its bound
ary. Thus different element types can be mixed easily. The addition and deletion 
of new points necessitates only local modifications in the data structure. More
over, all kind of neighbor information (e.g. the list of elements incident in a given 
edge, the list of neighbor elements of a given element etc.) can be retrieved in 
constant time; thus, the data structure is adapted for the experimentation of 
different grid refinement strategies. 

The most serious drawback of the Hexblock data structure is its memory 
greed. The price to pay for the availability of all neighbor information in con
stant time is a high redundancy in the data structure. While we are convinced 
that Hexblocks are a good choice for the development of grid refinement algo
rithms, we do not know yet if the performance will be satisfactory for repeated 
simulations in a production environment. 

6 Implementation 

The grid generator is implemented in the object-oriented programming language 
C++ [l 1]. The choice of C++ has proven to be a good choice: the powerful data 
hiding mechanisms of the language permit to hide many details of the Hexblock 
data structure in lower modules. Obviously clean and structured programming 
is possible with any programming language. Nontheless our experience shows 
that the use of a language with powerful data hiding mechanisms makes things 
a lot easier when dealing with complicated geometries and data structures. 

Consider as an example the program segment below. The current partition 
is accessed via a pointer encapsulated in an object of type Tesse l l a t ion . The 
partition is accessed and modified only through the member functions of this 
class. 

Member functions, e.g. Neighbours () always apply to the element of the 
tessellation currently pointed to. In the last few lines of our example, we collect 
all neighbors of an element and refine all of these neighbors which contain green 
nodes. Notice how concisely such a complex operation is described in C++. 

The efficiency of the grid generator is not satisfying yet. The generation of 
a locally refined grid for a 3d abrupt MOS diode with 5735 points and 30030 
tetrahedra took 7 minutes CPU time on a SUN 3/260. Since all used algorithms 



504 

/* declaration of a class, including the functions 

which access the data fields */ 

class Tessellation { 

private: 

Pointer_to_hexblock ptr; 

public: 

void Add_vertex(); 

void Refine.element(); 

void Refine_green_eleraent(); 

int Is_green_element(); 

List.of_tess NeighboursO; 

} 

/* declaration of variables */ 

Tesellation current.element; 
List_of_tess neighbours; 

/* collect all neighbors of the current element and refine 

the elements with green nodes on their surface */ 

neighbours = current.element.Neighbours(); 

for (current.element in neighbours) { 

if (current.element.Is_green_element()) { 

current.element.Refine_green_element(); 

} 

> 

arc linear in time, linear extrapolation of these performances gives a rough 
estimate of the cpu limes needed for bigger examples. However, it must be 
noted that when the memory needed to store the grid becomes much (e.g. 4 
times) larger than the real memory allocated to the process, the performance 
decreases significantly due to page thrashing. 

7 Conclusions 

We have presented a first version of an automatic grid generator for 3d device 
simulation. An algorithm for (he local refinement of a triangular grid according 
to a given point densily fund ion has been presented; the issue of how the quality 
of an existing triangular grid can be improved has been addressed. The presented 



505 

implementation is based on the Hexblock data structure. Hexblocks have proven 
to be a very flexible basis to explore new algorithms, while the question whether 
the code based on Hexblocks will be efficient enough for real life examples is still 
open. 

References 

[l] W. Fichtner, R. L. Johnston, and D. J. Rose, "," in Proc. 1981 Device 
Research Conf,, 1981. 

[2] A. Yoshii et ai, "A three-dimensional analysis of semiconductor devices," 
IEEE Trans, on Electron Devices, vol. ED-29, pp. 184-190, 1982. 

[3] T. Toyabe, Y. Ohkura, and II. Masuda, "Methods of three dimensional 
transient simulation and their applications to VLSI reliability problems," 
in Proc. of NASECODE V Conf., pp. 74-84, 1987. 

[4] M. Thurner and S. Selberherr, "The extension of MINIMOS to a three di
mensional simulation program," in Proc. of NASECODE V Conf., pp. 327-
332, 1987. 

[5] E. M. Duturla et ai, "," in IEEE Solid-Slate Circuits Conf. Dig. Tech. 
Papers, p. 76, 1980. 

[6] J. F. Diirgler, R. E. Bank, W. Fichtner, and R. K. Smith, "A new dis
cretization scheme for the semiconductor current continuity equations,". 
Submitted to IEEE Trans, on CAD. 

[7] F. P. Preparata and M. I. Shamos, Computational Geometry — An Intro
duction. New York: Springer, 1985. 

[8] M. R. Pinto, C. S. Raflcrty, and R. W. Dutton, "PISCES-II—Poisson and 
continuity equation solver," Tech. Rep., Stanford Electronics Lab., 1984. 

[9] R. E. Dank, "Pltmg users' guide-edition 5.0," Tech. Rep., Dept. of Mathe
matics, University of California at San Diego, 1988. 

[JO] C. E. Buckley, "The hexblock modelling system,". To be published, 

[11] B. Stroustrup, The C++ Programming Language. Reading: Addison-
Wesley, 1986. 


