
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 3
Edited by G. Baccarani, M. Rudan - Bologna (Italy) September 26-28,1988 - Tecnoprint

A flexible and efficient adaptive refinement scheme
using a local solution procedure

P. Ciampolini, A. Forghieri, A. Pierantoni, M,Rudan and G. Baccarani

Dipartimento di Elettronica, Informatica e Sistemistica
Universita di Bologna, viale Risorgimento 2, 40136 Bologna, Italy

Abstract

An adaptive refinement scheme which implements a local solution of the full
set of semiconductor equations is presented. The software implementation al
lows for different error estimates, some of which are described. Some practical
examples (a bidimensional p-n junction and a planar MOSFET) are presented,
along with data concerning the efficiency and reliability of the scheme.

1 Introduction

With the increasing availability of low-cost computational resources, adap
tive mesh generation is becoming one of the most attractive features for the
field-users of device simulation programs. In fact, adaptive meshing com
pletely relieves the user from the burden of mesh generation (thus saving a
considerable amount of user's time) while ensuring a grid whose properties are
automatically tailored to the problem to be solved, this avoiding the waste
of CPU time occurring when simulations are performed on inadequate grids.

Since these kind of schemes usually require repeated solutions of a test
problem, involving large data transfers between part of codes in charge of
different tasks (typically a mesh generator, a numerical solver and an I/O
manager), a scheme which aims at being used in practical applications must
satisfy a number of efficiency, flexibility and reliability requisites. In particular,
an adaptive mesh generator should:

• run as fast as possible, taking advantage from the knowledge of previ
ously computed values of the selected quantities;

• make the implementation of different refinement criteria feasible;

• lead to stable solutions with respect to node addition.

In the following, we discuss a scheme that fulfills these requirements using
software modules (previously existing as stand-alone programs) linked in an
integrated system whose efficiency has been enhanced by means of several
software and numerical techniques, among others a local solution of the semi
conductor equations and an accurate first, guess determination.

508

2 Software implementation

Fig. 1 shows a. schematic block diagram of the software organization that im
plements our adaptive scheme. After defining the device geometry and physical
parameters via, the input preprocessor (W A L U A L L) the control is transferred
to the mesh generator (A T M O S) which manages the iterative loop.

Geometry

Generation of
1st order grid

Automatic
refinement

Physics

Conversion into
the triang. grid

II
Bias

Eqns. solution
(after the 1st it,
local sol, only)

Resumption of
the rect. grid

Error estimate
&

refinement tests
-MEND

Figure 1: Block diagram of the adaptive refinement loop.

This is accomplished through the following steps:

1. a. first, coarse grid is generated, either au toma t i ca l ly or interactively;

2. the control is then transferred to the solver (H FIELDS,) which estimates
the local error and returns a list of rectangular elements which have to
be refined: this test is controlled by a user-supplied parameter, which,
as will be shown later, is roughly inversely proportional to the number
of nodes of the final mesh;

3. A T M O S performs the refinements and loads the appropriate values of
the electric potential and quasi-Fcrmi potentials on the mesh nodes:
this means that every node belonging to the previous mesh receives the
value computed by 11 FIELDS, while "new" nodes (due to the current
refinement) receive a value that linearly interpolates the values of their
neighbours. We stress that performing such an operation at this point
leads to a considerable time-saving: in fact such an interpolation requires
a time of order 0(N2) if performed later on (because every node requires
an inclusion test on every triangular element of the "old" mesh) while
the same ta.sk requires a time of order 0{N) when performed by A T M O S .

A. The control is then transferred to H F I E L D S which solves again the prob
lem, but. only for the "new" nodes and their neighbours (the reason of
this is explained below) thus implementing what we ca.ll the "local solu
tion technique". The program then iterates points (2) and (3) until no
more refinement is required: after that , the interactive mode is switched
on. and the user can continue the session.

ta.sk

509

While a deeper insight of A T M O S and H F I E L D S may be found in [1,2] we give
here a short outline of their main features.

H F I E L D S (Hybrid Finite Element Device Simulator) is a numerical device
simulator based on a classical DIM (Box Integration Method) scheme: since it
makes use of triangular elements, it is capable to deal with completely general
geometries.

A T M O S (Authomatic Triangular Mesh Optimization System) is a pro
gram which generates triangular meshes on the basis of a "rectangular ap
proach" that is, performing all required refinements on a rectangular-element
grid, only roughly conforming to the device geometry, and carrying out the
conversion into triangles and the adaption to geometry at the very last step.

2.1 Initial guess determination and local solution

The loop described in the previous section involves a number of operations
intrinsically time consuming which may eventually make the mesh generation
process insufferably lengthy. Improvements may be achieved both by speeding
up the convergence rate of the solver and by decreasing the dimension of the
problem which is repeatedly solved. As described above, our mesh-generation
scheme requires the iterated solution of the non-linear set of the semiconductor
equations: it is well known that the convergence rate of such a problem is
strongly affected by the accuracy of the initial guess. Needless to say, the
chance of using the solution evaluated on a coarser mesh to find an accurate
initial guess allows one to considerably shorten the solution times. Plots in
Fig. 2 show solution times versus number of iterations for a planar MOSFET.
The dot-dashed line refers to a global solution and to a rough initial guess, in
which electric potential and quasi-Fermi potentials are initialized in a step-like
fashion; the dashed line refers to an "interpolated" initial guess, which sets old
mesh nodes to the values computed in the previous solution, while the newly
generated nodes are initialized by means of a linear interpolation: the CPU
time saving is evident. Initialization times may be shortened by evaluating
the initial guess while adding nodes to the mesh, as stated above: in this case,
it is in fact possible to take advantage from the knowledge of the "names" of
the new nodes neighbours.

Another feature that saves a considerable amount of time is the "local
solution". Since a lower accuracy of intermediate solutions may be allowed at
the expense of computing a complete solution on the final mesh our program
solves for potential and carrier concentrations only over a sub-set of nodes in
each intermediate mesh. The solid line in Fig. 2 refers to solution times when
both local solution and interpolated initial guess are used. The selected sub
set includes both the new nodes and their neighbours, while concentrations
and potential values of remaining nodes are regarded as boundary conditions
of the problem. Solving equations only at the newly-generated nodes may
cause some evil effects such as the node clustering shown in Fig. 3 (left).
New nodes cluster around nodes belonging to the earliest generations — whose
values have not been updated since the very first iterations — and are, there-

510

2800.

2100.

1400.

700.

NO INTERPOLATION

GLOBAL SOLUTION

LOCAL SOLUTION
/

2. 3. 4. 5.

NUMBER OF ITERATIONS

6.

Figure 2: Solution times (on a MicroVAX II) versus number of iterations, for
a planar MOSFET.

Figure 3: Influence of local solution on adaptive refinement, when solving the
equations only at newly-generated nodes.

511

fore, affected by the largest errors. Fig. 3 (right) shows a particular of the
solution computed at this stage: although the heigth of the "ridges" is small,
they strongly modify the second order differential quantities (e.g. curvature),
which are taken into account by the refinement test. On the other hand, solv
ing the equations also on the nearest neighbours of the new nodes allows one to
adjust the boundary conditions of the local solution by moving the boundaries
of the reduced domain toward less perturbed regions. This results in smoother
surfaces and better meshes, as shown later in Fig. 11.

Fig. 4 summarizes the behaviour of the two features above; the norm A is
defined as follows:

A = imi*Ar { ' w ~ *• ')

where N is the number of nodes, y>, is the value of the electric potential com
puted at the i-th node through a "global" solution and fy is either the corre
sponding value supplied by the "local" solution (dashed line) or the interpo
lated initial guess (solid line). As the procedure approaches convergence, the
quality of the initial guess improves, while a good agreement between "local"
and "global" solutions is mantained.

l. 2. 3. 4. 5.

NUMBER OF ITERATIONS

Figure 4: A versus number of iterations

2.2 The refinement algorithm

The principle informing our refinement strategy is — quite obviously — that
a higher node density is needed in the regions where the selected physical
quantities deviate from a linear behaviour. A measure of this deviation is
given by the differential moments of an appropriate additive combination of

512

the significant, physical quantities, sometimes called a "monitor surface" (see
for instance [3]). We found that , in most cases, the choice of the electric
potential is sufficient to appropriately depict the main features of a device
behaviour. More sophisticated mathematical models may, however, require
the consideration of different quantities (sec, e.g., [4]). A "weight function"
can thus be defined, whose general form, in terms of ordinary derivatives, is:

n

£"'.(£7) (i)
1=1

where «;,- are numerical "weights" and D' is the i-th order differential operator.
We choose to take into account only the second order terms for a number of
reasons, among which:

• every differential term in (]) has to be evaluated numerically: the accu
racy with which differential terms of order higher than the second may
be computed is therefore low;

• we do not account for first order terms since these would bring to high
values of the weight function even in regions where the behaviour of the
monitor surface is strictly linear, their discretization therefore requiring
a low nodes density .

A rectangular element will therefore be refined if the following condition is
fulfilled (/? being supplied by the user):

] d2<p

2Atpjnax \ (IP
(A /) J > / 5 (2)

Here, the expression (d <p/dl) . stands for the directional second derivative
of ip and is given by:

d2<p\ 2 2
-jjY I = fxxcos a+ 2fJ:y sin a cos a + fyy sin a (3)

/ in ax

The algorithm implementing this test may be considerably simplified if only
the terms fxx, fyy are taken in consideration to determine horizontal and
vertical refinement: on the other hand, this would lead to exceedingly poor
meshes in regions where fxy is dominant. It is for instance easy to see that the
function f(x,y) = xy will not trigger the refinement test if fxy, which is the
only non-zero second derivative, is not accounted for. The geometric intcrprc-

(*2\ 3/2
] + (g'i))

is the curvature of g(l) and 6 = | fj" (Ax)2 | l\Jl + (g\)2 is the radial distance
between the curve and its osculating circumference. The refinement test (2)
amounts therefore to the checking of the condition 6/ cos \ < &•

An alternative test may be implemented by requiring:

6 < 0 (4)

513

«*&4vA

o

Figure 5: Geometrical meaning of the refinement criterion.

instead of (2). This amounts to consider a weight function of the form (1), but
using differential operators in the intrinsic surface coordinates. Although this
approach would be preferable from a geometrical standpoint, we have found
significant differences between the two approaches only when the number of
nodes becomes so large as to exceed practical limits in terms of storage and
CPU time: since the methods are comparable as far as the quality of the
generated meshes and computational efficiency are concerned, they are, in
practice, interchangeable,

3 Results

Many efficiency tests have been performed on the various techniques described
above: Fig. 6 shows the typical behaviour of the program in terms of total
number of nodes, number of nodes on which the program actually solves (un
knowns), solution times and non-linear loops needed to achieve the conver
gence for Poisson's equation. The dramatic increase of CPU times due to the
switching off the local solution and the initial-guess determination is shown
in Fig. 2. The experiments we performed showed that our method is "conver
gent", that is, it eventually stops adding nodes and claims that the generation
process is terminated. While this may be regarded as a quite obvious feature,
we more surprisingly observed that, if appropriate values of the parameters
are chosen (0 — 0.01 is often a good choice), the process terminates as the
current sets to a stable value: Fig. 7 eloquently illustrates this phenomenon.
When reasonable refinement levels are reached, the current ceases to be sen-

514

60,

50.

40.

30.

20.

10.

NODES

OLUTION TIME

900.

700.

500.

300.

100.

4. 6.

NUMBER OF ITERATIONS

10.

Figure 6: Plots of the solution times, of the number of unknowns and of the
number of Poisson iterations. Left scale refers to times and iterations, right
scale to nodes and unknowns.

5.0E-05

4.9E-05

%

g 4.8E-05

4.7E-05
3. 4. 5.

NUMBER OF ITERATIONS

3.2E-04

2.8E-04

2.4E-04

2.0E-04

Figure 7: Computed currents versus number of iterations for both a planar
MOSFET and a p-n cylindrical junction.

515

sible to node addition, as shown in Fig. 8 for both a planar MOSFET and a
p-n junction: too coarse meshes may instead cause wild behaviours. Another

5.6E-05

5.3E-05

5.0E-05

4.7E-05

i ;

i \

t \

I v / \

' v ^ V | |

j y
! V

1 -—

.

MOSFF.T

DIODE

4.0E-04

3.4E-04

2.8E-04

2.2E-04
200. 400. 600. 800. 1000.

NUMBER OF NODES

1200. 1400.

Figure 8: Computed currents versus number of nodes for the same devices as
above.

interesting phenomenon is illustrated in Fig. 9, where relationship between
0 and node number is shown, for a p-n cylindrical junction. For each bias,
the points fit a different hyperbola: the spread of the values around the "least
squares" curve is fairly small. Similar curves, drawn for different devices, are
compared in Fig. 10, and corroborate the hypothesis of a functional link be
tween 0 and the resulting number of nodes. This inverse proportionality may
be explained by observing tha.t, as it is well known, the discretization error
of a BIM method is of the order of o(h2) (h being a characteristic dimension
of the mesh) and therefore of the order o(l/Nn0!jcs). Although 0 cannot

be straightforwardly identified with the error involved in the discretization
method, Fig. 9 and 10 show that a non-casual link between these quantities
can on good grounds be supposed. Furthermore, this phenomenon may be
advantageously used as a "thumb-rule" for the determination of a value of 0
appropriate to the user's needs.

Lastly, Fig. 1] shows meshes generated for the p-n cylindrical junction
above, for a planar MOSFET and for a non-planar gated diode, along with the
3-D perspective plots of the electric potential inside the devices. In all cases,
the distribution of nodes allows for an accurate description of the electric
potential, while unnecessary refinements in neutral and ohmic regions have
been avoided.

516

w
D
O

z
b
O
as
u
a
S
D
Z

1850.

1400.

950.

500.

50.

1 1
1 11

l \
A 1̂ 5 \

! 1 s \ » ¥ 4 A- v-.* *

•-*̂

~ i . ~ « ^S "

*

^1

Vf = 0V

V f = 0 . 3 V

. V f = 0 . 5 V

Vf = 0.6V

.

• • 'A

0.00 0.08 0.16

BETA

0.24 0.32

Figure 9: Relationship between P and number of nodes, for a cylindrical p-n
junction, with different forward biases: at the equilibrium (O), and with 0.3V
(*), 0.5V (A) and 0.6V (+) applied. Continuous curves are obtained through
linear regression of data points.

1800.

1500.

1200.

M
Q
O
Z
h.
0
et
U
H
2
P z

900.

600.

300.

0.00

_ _ . Diode

MOSFET

Gated diode

>-~

0.03 0.06

BETA

0.09 0.12

Figure 10: Same curves of previous picture, but related to different devices:
p-n cylindrical junction (A), a planar MOSFET (D) and a non-planar gated
diode (*).

517

/

^ s ^

-—-—

-*^ZZ-
^^

^̂ ̂

£-* r
S--?

ffiffiJE t>

o4|l|;^
X y ;ljl>: \ \ 7N.

A/

KDjlhU""!

3.16

|lhU«"l

Figure 11: Automatically-genera-ted meshes (right column) and related plots
of electric potentials for the three devices of Fig. 10

518

4 Summary and conclusions

An integrated software tool lias been presented, which allows generation of
meshes that automatically conform to the geometrical and physica.1 features
of the problem to be solved. Special care has been devoted to avoid exceed
ingly large computation times, by adopting several techniques, among which a
locaJ solution algorithm and a procedure to evaluate an accurate initial guess.
Different approaches to the refinement algorithm have been described, along
with their mathematical foundations. Furthermore, a number of results have
been presented, concerning reliability, efficiency and accuracy of the scheme,

ft is our opinion that adaptive refinement schemes will both improve the
friendliness of the user interface of numerical simulation programs, this simpli
fying their use as practical engineering tools, and constitute a key for a better
understanding of the role played by meshes in numerical device simulation.

Acknowledgements

This work has been partially supported by the Italian National Research Coun
cil (Progetto Finalizzato "Material! c Dispositivi per l 'Elettronica") and by
the European Economic Community, in the framework of the ESPRIT 962 -
EVEREST project. Support from SGS-Thomson is also gratefully acknowl
edged.

References

[1] P. Ciampolini, A. Pierantoni, A. Gnudi, M. Rudan and G. Baccarani,
"Adaptive mesh generation preserving the quality of the initial grid"
Proc. of the NUPAD II Workshop, S.Diego, 1988.

[2] G. Baccarani, R. Guerrieri, P. Ciampolini and M. Rudan, "HFIELDS: a
Highly-Flexible 2-D Semiconductor-Device Analysis Program," in Proc.
of the NASECODE IV Conference, J . J . H. Miller Ed., Dublin: Boole,
pp. 3-12, 1985.

[3] G. Erlebacher and P. R. Eiseman, "Adaptive triangular mesh generation,"
AAIA, vol. 25, no. 10, pp. 1356-1364, 1987.

[4] A. Forghieri, R. Guerrieri, P. Ciampolini, A. Gnudi, M. Rudan and G.
Baccarani, "A new discretization strategy of the semiconductor equa
tions comprising momentum and energy balance," IEEE Trans, on CAD
oflCAS, vol. 7, no. 2, pp. 231-242, 1988.

