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SUMMARY 

The two-dimension integration of POlSSON's equation is 
applied to the study of the field effect in a metal-
oxide-small grain polycrystalIine silicon structure . Both 
grain boundaries perpendicular or parallel to the Si/SiOj 
interface are considered . We show the particular role of 
the first parallel grain boundary on the electrostatic 
potential variations induced by the gate voltage. It 
impedes these variations drastically and limits them to the 
first grain. 

INTRODUCTION 

In the prospect of three-dimension devices and flat 
panel displays of large aera, which combine both the driver 
circuit and the liquid crystal display, deposition of sili­
con on amorphous or vitreous substrates is studied. Due to 
the low temperature process imposed by the nature of the 
substrate, silicon is polycrysta11ine or amorphous. Some 
displays elaborated with amorphous silicon have been manu­
factured (LE CONTELLEC, 1985), but the poor qualities of 
these devices (high response time, low mobility... ) 
increase the need of a specifical study of polycrystal1ine 
silicon in either a technological or a theoretical way. 

This paper deals with the modeling of the field effect 
within a polycrysta11ine silicon layer. The complete 
modeling of the field effect needs to account, on one hand, 
for the electrostatic phenomena by solving the POlSSON's 
equation and on the other hand, for electrical conduction 
phenomena by solving the two equations of continuity, 
(GUERRERI, 1986), We choose to pay a particular attention 
to the only POlSSON's equation to study, in a first 
approach, the electrostatic potential variations induced by 
a gate voltage in a polysilicon MOS capacitor. The only way 
is the numerical integration of this equation with a proper 
choice for the geometrical modeling of the polycrysta11ine 
silicon layer. We'firstly detail the numerical method we 
use to solve the POlSSON's equation, then we specify the 
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simulation domain and finally, we present and discuss the 
results of the simulation. 

THE POISSON EQUATION 

PQISSON's equation is considered in it's genera! form: 

(1) div( k x grad<§) ) - q x ( n(§)- p ( § ) - N„ • +N." 

+ £< N-,.s (§) - N*,, ,(§))) 

where k is the permittivity, $ the electrostatic potential, 
n and p electron and hole concentrations, H6' et N." impu­
rity concentration (donor or acceptor), N*,„, and N",, , 
ionized trap densities ( donor or acceptor) at grain bound­
aries whose energy level E,,, or E,., is located in the 
energy gap. 

Electron and hole concentrations are calculated by 
MAXWELL BOLTZMANN's statistics . 

q§-q§«„+kh, 
(2) n ($) = Nc exp 

kT 

q§-q§»,+kh, +E, 
(3) p (5) = Nv exp 

kT 

where Nc et Nv are the effective densities of states in the 
conduction and valence band edges, §< „ et §4P electroche­
mical potentials for electrons and holes, kh( electron 
affinity and £„ the band gap. 

As iong as thermodynamical equilibrium is concerned, 
the electrochemical potentials are identical and constant 
throughout the complete structure. impurities are assumed 
ionized at room temperature, T = 300 K. ionized traps 
densities are given by the SHOCKLEY, READ and HALL 
model , CS.R.H), (SHOCKLEY, 1952) : 

C i .n+ Cp , .p, 
(4) N-..J = 

C„j.(n+n,,)+C„,.(p+Pi!) 

C, i • P+ C„ j . n, j 
(5) N-,0J = 

C j.(n + n,,)+Cp,.(p+pi i ) 

C„ , et Cpi are the capture coefficients for electrons and 
holes, but only their ratio is needed. In the lack of 
precise values for C„ ( and C,,, we assume C„ , =C, t . In a 
previous work, we have shown that the exact value has no 
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significant importance on numerical results at least at 
room temperature (LHERMITE, 1988a), 

Parameters n u et p,, are calculated in the MAXWELL-
BOLTZMANN statistics by the following expressions : 

E..-E. 
(6) rii , = Nc exp 

kT 

E. -E, , 
(7) Pi j = Nv exp 

kT 

In its general form, POISSON's equation is an ellip­
tic second-order non linear differential equation and 
therefore has no analytical solution. So it is necessary to 
solve it by means of a numerical method. The method we 
choose, is a finite difference method whose main points are 
hereafter detailed. 

NUHERICAL METHOD 

Due to the exponential terms in the free 
concentrations expressions, POlSSON's equation is 
non 1inear. 

First, we linearize this equation by setting: 

(8) § = §° + S§ 

§° is an initial estimate for electrostatic potential 
which satisfies the boundary conditions, and £§ becomes the 
new unknown parameter. 

All densities are linearized in this way : 

d (n(§)) 
(9) n(§) = n(§°) + . S§ 

d§ 

d <p(§)) 

(10) p(§) = p!5°) + • S£ 
d? 

d (N-..J(§)) 
(11) N" ».,(§) = N-,.,(5*) + . £5 

d$ 

d (N*,0J(§)) 

(12) N*,d(<§> = N*,<i(5°) + • S§ 
d§ 

carrier 
strongly 
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The linearized POlSSON's equation is written .-as 
foilows : 

d(n(§)-p(5)+E(N-,. j (§)-N',< j (§) 

(13) div( k grad(£$))-q = 

d§ 

-div(kgrad(§))+q(n(§)-p(§)- N„•+ N.-+ICN"»«,(§)- N*».,(§))) 

Besides, we have to discretize the divergence and 

gradient terras by means of a classical five points scheme 

(SELBEHERR, 1984). 

The discretized POlSSON's equation is written in its 

matricia! form : 

(14) B, , x £§,.,,, + H, , « J5,.L,I • G, j x £5,,j-, 

* D,, x J},,,., • T n x «,, = V, , 

where the £§ value at point (i,j) is now given by the four 

neighbouring values. The B, H, G, D, T and V factors are 

matrix elements. To obtain the £§t , , it may be necessary 

to inverse the matrix, but it is a time consuming and 

rather critical procedure if we want a good accuracy for 

5. j. 

So, we have solved the POlSSON's equation by an indi­

rect method, line after line, then column after column. The 

matrix of the system has now a tridiagonal form and the 

solution is reached by means of a gaussian algorithm, 

(GERALD, 1978). 

Using relation (8), § ( , is deduced from the £§j j 

value ; §,j becomes a better approximation of the electro­

static potential than §*,,. This iterative scheme is repea­

ted as long as the maximum of £§i j is greater than an arbi­

trary value which sets the required precision we want for 

the electrostatic potential. 

This method, derived from the GUMMEL method, 

(GUMMEL,1962), has the disadvantage to under-evaluate £§i , . 
In the first iterations, £$,, can be close to, and even 

greater than the £§,( values. The linearization of the con­

centrations in expressions 9-12 is only valid if £§, > is 
small compared to 5, , . if not, a dumping method is needed 

to calculate the £5,,. The method we used was firstly 

proposed by J.E. VIALLET and S. MOTTET (1985). 

As long as the maximum of the £§,, is greater than 

kT/2q, we used the following relaxation : 

|S5. ,| kT q | S5. j j 
(15) £§, , = — x x Ln (1 + — — ) 

£§, , q kT 
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This method gives the opportunity of reaching the 
maximum accuracy for the calculated 5,, : i x 10 _" in 
double precision. Nevertheless, to minimize the computation 
time, we assigned i x 10"* to this precision. 

SIMULATION DOMAIN 

The simulation domain shown in Fig.l consists of two 
regions : the first one relative to oxide, the second to 
po1ycrystal1ine layer. 

!0 ,0 ' tv / 

Lox 

PARALLEL 
^ G R A I N BOUNDARIES 

PERPENDICULAR 
GRAIN BOUNDARY 

FIG.l Simulation domain. 

The oxide, 100 nm thick, is assumed ideal, and then 
does not contain any fixed charges ; in the same way its 
Interface with the polycrysta11ine layer is assumed ideal. 

The polycrystal1ine layer consists of several 
crystallites separated by grain boundaries. Crystallites 
are made of monocrysta11ine silicon, and have the classical 
properties generally attributed to this material. 

The small grain polycrystal1ine silicon have grain 
boundaries randomly distributed in the entire polycrystal-
line layer . A quite simple way to this layer is to consi­
der grain boundaries perpendicular and parallel to the 
Si/SiOj interface. As far as we are concerned, we assume a 
perpendicular grain boundary and two parallel grain boun­
daries distant of 100 nm. Furthermore, we assume that grain 
boundary has a finite width. The method we use to solve the 
POlSSON's equation makes this assumption necessary. 
Moreover, this assumption gives the convenience to consider 
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the grain boundary as a material with its oun properties. 
Ue consider that grain boundary is 1 nra thick. The surface 
densities are converted into bulk concentrations uniformly 
distributed in the grain boundary region . So, the minimum 
value 1 nm is assigned at grain boundary and is increased 
by means of a geometrical series on both sides of the grain 
boundary. 

The simulation domain is Ly = 600 nm wide and Lx = l \im 
long. 

HOD£IJhlG_ PARAMETERS^ 

a- Constants (SZE, 1905). 

The physical parameters of the oxide are those of a 
thermally grown oxide from a monocrysta11ine silicon subs­
trate. So, we get the following values for the permittivity 
and the electron affinity : 

kh,c. = 4.1 eV ; k„, = 3.9 

The crystallites made of monocrysta1iine silicon, have 
the following physical values : 

Nc = 2.82 1 0 " cm"3 ; N, = 1.02 1 0 " cm"3 

E, = 1.12 eV ; k, = 4.04 eV ; k., =11.7 

b-Simulation parameter. 

The electron concentration in the n-doped polysilicon 

layer is 1 x 10'* cm-3 Doping is assumed evenly distri­

buted, as generally admitted. 

The main problem with a numerical simulation within a 

po1ycrysta1 Iine layer is the modeling of the grain 

boundary. We take into account here the trapping carrier 

model firstly proposed by SET0, (1975). Because of the high 

crysta11ographic disorder inside the grain boundary, this 

region is the centre of high traps densities whose energy 

levels are possibly distributed over the entire band gap. 

The real distribution of the trap levels is quite 

problematic because it varies from a sample to an other and 

strongly depends on the measurement methods. To account for 

the electric phenomena inside the poIycrystaI 1ine silicon 

either n type or p type doped, it is necessary to consider 

both kind of traps, acceptor traps and donor traps. The 

reason put forward is the existence, at the interface 

between two crystallites, of dangling bounds which 

introduce one acceptor level and one donor level 

symmetrically located from midgap (LANN00, 1981).This well 

explains thie relative position of the fermi level at midgap 
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over a large range of concentrations (SEAGER, 1978), A 
previous work has shown that one acceptor level and one 
donor level both at midgap with the same densities, allows 
to account for the electrostatic phenomena within a poly-
crystalline layer (LHERM1TE, 1988b). So, we used the 
fo!1 owing va lues : 

N,. = N«, =10'J cm"3 ; E,.-E, = E,. -E. = -E,/2 

BOUNDARY CONDITIONS 

Boundary conditions are assigned at each limit of the 
simulation domain, 

i) a D1RICHLET condition at the oxide surface where 
the electrostatic potential is fixed by the gate voltage, 

ii) a NEUMANN condition at the other limits where we 
assumed that the electrostatic potential no longer varies. 

The perpendicular grain boundary in the simulation 
domain shown figure 1 is a symmetrical plane. Nevertheless, 
to avoid an elliptic condition, we consider the entire 
domain (instead of the half one) because the D1R1CHLET and 
NEUMANN condition are quite easy to satisfy. 

NUMERICAL RESULTS 

Figure 2 shows the band bending inside the 
polycrystal1ine layer when a -3-Volts-gate voltage is ap­
plied. At the interface, far from the perpendicular grain 
boundary, the layer is inverted because the gate bias is 
enough sufficient to induce hole concentration higher than 
the electron concentration. At the intersection of the 
perpendicular grain boundary and the interface, we see a 
band bending due to the trapping of holes by donor traps. 
Along the interface, in the inverted layer, a depleted 
layer is localized near the grain boundary. From the 
interface, the induced hole concentration decreases and the 
ionized donor trap rate decreases ; the electron 
concentration increases and consequently the ionized 
acceptor trap rate increases. Combining both these 
phenomena leads to a complete depletion between the two 
grain boundaries parallel to the interface : bands are flat 
in this region. Far from the last parallel grain boundary, 
the neutral bulk is reached : a band bending appears near 
the perpendicular grain boundary because the electrons 
ionize acceptor traps ; consequently, an electron depleted 
region exists near the grain boundary. This barrier height 
has opposite sign than the interface one. 
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PARALLEL 
GRAIN BOUNDARIES 

PERPENDICULAR 
GRAIN BOUNDARY 

FIC.2 SD-representation of the electrostatic 
potential in the simulated layer. 

The outstanding result of this simulation is that the 
field effect is limited by the first parallel grain 
boundary. To give evidence of that, we plotted the 
variation of the electrostatic potential versus the gate 
voltage in a plane parallel to the Oy axis. 

Figure 3 shows this variation in the plane x = 0. We 
note that, whatever the gate voltage is, the electrostatic 
potential variation induced by the voltage is 1iaited by 
the first parallel grain boundary. Moreover, the region 
behind the last parallel grain boundary presents the 
classical variation of the electrostatic potential in the 
vincinity of a grain boundary : these variations would be 
the sane in the absence of a field effect. 

.3 
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.0 .1 .2 .3 .4 
DISTANCE FROH THE Si/S;02 INTERFACE 

(urn) 

ric. J O c t r o i t j t i L - potential variations versus 
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Figure 4 shows a section in the plane x = L,II. Ue see 
similar but more pronounced results because the traps are 
close to the interface. 

.0 .1 .2 .3 .4 
DISTANCE FROM THE SI/S102 INTERFACE 

(jun) 

TIG.A Electrostatic potential variations versus 
the gate bias in the plane x*0. 

CONCLUSIONS 

Ue have shown the particular role of a parallel grain 
boundary. It drastically impedes the variation of the elec­
trostatic potential induced by a gate voltage. Furthermore, 
we note that the variation of the so-called deserted layer 
is limited by the position of this grain boundary ; that is 
of great importance in the quasi static variation of the 
C-V characteristic of a capacitor elaborate with polycrys-
talline silicon. Furthermore the parallel grain boundary 
plays a relative important role compared to the perpendi­
cular grain boundary. That explains why one can obtain a 
suitable modeling of the quasi static behavior of a 
metal-oxide-sraal1 grain polysilicon capacitor by using a 
one dimension geometrical model (LHERHITE, 1988a) 
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