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SUMMARY 

It is generally accepted that Gummel's decoupled 
algorithm, for the solution of the three semiconductor 
equations, fails to converge when the problem includes PN 
junction isolated non-contacted, i.e. floating regions. 

This failure to converge can manifest itself in the form 
of non-physical negative carrier concentrations that show no 
tendency to disappear as the iteration cycle is successively 
repeated. 

In this paper a corrective procedure is presented that, 
when applied to every mesh point at which a negative carrier 
concentration occurs, results in decaying negative 
concentrations and ultimate convergence. In addition it is 
demonstrated that the choice of boundary conditions can affect 
convergence for floating region problems. 

Two examples are given to demonstrate the convergence 
properties of the modified algorithm for both forward and 
reverse bias conditions. 

1. INTRODUCTION 

There are two main iterative approaches to solving the 
three semiconductor equations:-

Div(Grad(V)) = -q/e (p-n+N) (1) 

Div(Jn) - -R (2) 

Div(Jp) = +R (3) 
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where J^ *• -q pnn Grad(V) + DnGrad(n) (4) 

and £p = -q upp Grad(V) - DpGrad(p) (5) 

The simplest approach is that due to Gummel [1,2] i.e. 
the decoupled method, which proceeds as follows:-

(a) Equation (1) is solved for the potential (V) with an 
assumed initial distribution of electrons and holes 
(n and p respectively). It is also assumed during the 
iterative solution for V that the electron and hole 
quasl-Fermi levels (Vn and Vp respectively) do not 
change so that n and p are related to the varying 
potential via: 

n - niexp[q(V-Vn)/kT] (6) 

p = niexp[q(Vp-V)/kT] (7) 

(b) Equation (2) is then solved for n with the new potential 
and hole distributions resulting from step (a). 

(c) Equation (3) is solved for p with the new potential and 
electron distributions. 

(d) If certain convergence criteria are not met the procedure 
is repeated from step (a) with the new initial 
distributions. 

The second approach, called the coupled approach, seeks 
to solve all three equations simultaneously [2], When 
discretised the three equations are assembled into one large 
matrix (3Nx3N, where N is the number of nodes) and solved via 
Newton linearisation. 

Gummel's algorithm is relatively easy to implement, 
converges well from a poor starting guess of the potential and 
carrier distributions, and requires significantly less memory 
than the coupled approach. However it has generally been 
reported that the method fails to converge when the problem 
contains PN junction isolated non-contacted i.e. floating, 
regions. The coupled approach is believed to be superior in 
this respect though convergence is difficult to obtain as a 
good starting guess is essential for any problem solved using 
this method. 

At our laboratory a general 2D on-state model named 
HECTOR [3], has been written based on the Gummel algorithm. 
In this paper the effect of boundary conditions on convergence 
will be discussed, also a simple modification to Gummel's 
basic algorithm will be presented that results in the 
convergence of the program HECTOR for floating region problems 
from a poor Initial guess of the potential and carrier 
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distributions. Two examples are given to illustrate the 
convergence properties, the first is a reverse bias floating 
ring edge termination problem for which a comparison can be 
made with our off-state program TRIPOS [4,5], The other is 
a forward bias problem concerning a breakover diode which is 
essentially a four layer structure with no contact to the 
substrate. 

2. 2D ON-STATE MODEL HECTOR 

HECTOR is a general 2D on-state finite difference program 
based on Gummel's algorithm, however before proceeding further 
it is important to note the method used for solving the 
carrier continuity equations. Because of the need for highly 
accurate computation of the carrier densities (small 
inaccuracies result in large potential inaccuracies) a direct 
solver is used that performs a complete LU matrix 
decomposition. 

A problem is considered converged if the maximum 
potential change at a mesh point, on solution of (1), is less 
than a fraction (typically 0.01) of a thermal volt. 

At an early stage of development, the program employed 
first order reflecting boundary conditions. In the following 
section a demonstration of the effect of such boundary 
conditions on the convergence of floating region problems will 
be given. In its current form HECTOR employs second order 
boundary conditions at reflecting boundaries. 

3. BOUNDARY CONDITIONS 

Experience gained from the development of the program 
TRIPOS suggested that first order reflecting boundary 
conditions invariably lead to computational problems. 

A simple example clearly demonstrated that the use of 
first order boundary conditions, within HECTOR, was the cause 
of convergence failure for some problems involving floating 
regions and that normal convergence could be obtained if 
second order boundary conditions were used. 

Figure 1 shows a rectangular region of n-type silicon 
completely surrounding a p-type floating region, the structure 
being symmetric about axis CD. Contacts were applied along AE 
and BF with a potential difference of 1 volt. When first 
order boundary conditions were employed convergence could be 
obtained with the problem area defined by AEFB. However the 
equivalent, smaller, problem area ACDB would not converge, 
i.e. the residuals would not decay to the required accuracy. 
Applying second order boundary conditions in the two cases 
resulted in convergence to the same solution. 
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Figure 1: Device structure for demonstrating 
the effect of boundary conditions 

Whilst convergence could be obtained, in this case, by a 
proper choice of boundary condition, it was found that if a PN 
junction was formed, by diffusion into the semiconductor along 
boundary AE (of Fig. 1), then negative carrier concentrations 
appeared during the iteration process and convergence could 
not be obtained for either forward or reverse bias conditions 
irrespective of the choice of boundary condition. To obtain 
convergence it was necessary to develop a procedure for 
dealing with the negative carrier concentrations. 

4. CORRECTION PROCEDURE FOR NEGATIVE CARRIER CONCENTRATIONS 

Negative carrier concentrations arise, in HECTOR, because 
for a non-converged solution, of the three equations, the 
potential and other carrier distribution are incompatible with 
a positive concentration. This can be deduced as we solve for 
the carrier concentrations using a direct solver. 

The reasoning behind the corrective procedure is to 
modify the potential distribution so that it becomes 
consistent with a positive carrier concentration wherever 
negative concentrations occur. To this end the carrier 
concentration is restored to its equilibrium value and a 
voltage, determined by the magnitude of the negative carrier 
concentration at the mesh point, is added to the potential of 
that mesh point according to the Inverse relations of 
equations (6) and (7) i.e. 

v •» -kT/q ln(-n/n^) for electrons (8) 

v - +kT/q ln(-p/ni) for holes (9) 

Applying this corrective procedure on successive 
iterations results in a damping out of any negative 
concentrations that may occur and ultimately to convergence. 
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As an illustration of HECTOR'S ability to converge 
floating region problems the next two sections contain 
examples of its use under both forward and reverse bias 
conditions. 

5. ANALYSIS OF A FLOATING RING SYSTEM 

Figure 2 shows the device structure to be used in this 
example. A potential difference of 100 volts was applied 
between the substrate and main junction, which was held at 
0 volts. The two rings are floating and as a starting guess 
the ring potentials were set equal to the main junction 
voltage and all carrier concentrations set to their 
equilibrium values. Figure 3 shows the surface potential 
after 30 iterations, it can be seen that a positive potential 
is being developed on each ring by the modified algorithm. 
Figure 4 shows the fully converged surface potential after 
153 iterations the last occurrence of a negative concentration 
being at iteration 81. 
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Figure 2: Device structure for testing reverse 
bias floating region convergence 

This reverse bias example was deliberately chosen as a 
severe test for the algorithm to demonstrate its robustness. 
The large number of iterations required for convergence is 
a consequence of the large voltage applied. For on-state 
problems the speed of convergence, for floating region 
problems, of the modified algorithm compares well with the 
time taken for problems in which all semi-conductor regions 
are contacted. 

For comparison with our off-state model, Figure 5 shows 
a TRIPOS analysis of the same structure under identical bias 
conditions, agreement is to within approximately 0.5 volts for 
the ring potentials. 



611 

Terminated run 

Potential 

100.0 -

Figure 3: Calculated surface potential for reverse bias 
floating region problem after 30 iterations 
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Figure 4: Converged surface potential for reverse bias 
floating region problem after 153 iterations 
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MULTIPLE CUARD RING ANALYSIS 
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Figure 5: TRIPOS (off-state model) converged surface 
potential for reverse bias floating region problem 

6. ANALYSIS OF A BREAK OVER DIODE 

Thyristor and break-over diode (BOD) problems have also 
been tackled successfully. To illustrate this, Figure 6 shows 
the structure of a BOD, which is essentially two thyristors 
(one inverted) placed side by side. 
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Figure 6: BOD device structure 
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As each thyristor in the BOD structure has two possible 
states, the starting condition for an on-state solution is 
obtained by splitting one of the contacts so that its 
associated N+P junction can be forward biased to initially 
fill the device with carriers. This initial condition need 
not be calculated to full convergence, indeed only a few 
iterations are needed to introduce sufficient carriers. For 
this example an N+P junction was forward biased at 1 volt and 
allowed to run for 4 iterations to obtain the starting 
condition. 

Restoring the structure to that shown in Figure 6 and 
continuing the iteration procedure, for 1 volt applied across 
the device, resulted in convergence after 68 iterations. 
Figure 7 shows a vector plot of the converged total current 
flow for this example. 

7. CONCLUSIONS 

A somewhat heuristic, but effective, procedure has been 
presented that results in convergence of the Gummel alogorithm 
when solving the three semiconductor equations for a problem 
containing PN junction isolated non-contacted regions. 
Further the importance of employing the correct i.e. second 
order, boundary conditions at reflecting boundaries has been 
emphasised. 
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Figure 7: Converged, on-state, total current vector 
plot for BOD with 1 volt applied 
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