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ABSTRACT. 

The PRAL programme for energetic ion ranges 
already gives the most accurate prediction o-f the 
•first two moments of ion implantation profiles. Yet 
this algorithm is based upon a very simple 
formulism and is very fast to compute. We have 
extended this algorithm to give energy deposition 
profiles. These can be used to give estimates of 
ion created disorder. Comparisons with the Monte 
Carlo programme TRIM show these results to be of 
good accuracy. The advantage of this algorithm over 
the Monte Carlo programme is in the speed of 
execution. The energy deposition profile is 
obtained in times slightly longer than that for 
range profiles. 

Disorder profiles are becoming more and more 
sought after, particularly in device fabrication 
areas as implantation in single crystals is 
becoming extensivly used. The implant can often 
relocate in the implantation induced damage 
distribution during annealing. This algorithm gives 
a fast technique for predicting these profiles. 

Introduction. 

The Projected Range ALgorithm (PRAL) is an 
implantation range profile algorithm obtained by 
J.P.Biersack C1D based upon a diffusional model of 
the slowing down of an ion. This algorithm was 
later verified by Bier sack L2.1 to be consistent 
with Boltzmann Transport theory. The Biersack 
formulism has the advantage over other algorithms 
C3-S3 in that it is fast and flexible. The speed of 
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execution derives from the -fact that to obtain the 
first two moments of the implantation distribution 
one need only solve a set of three first order 
differential equations. These can be solved easily 
numerically and in such a way that they yield 
values for all ion energies upto the point of 
interest. The algorithm is flexible in that as it 
is a numerical solution it can employ any 
formulation of stopping power available - this is 
usually split into two parts (nuclear Sn and 
electronic Se) and the Biersack algorithm can also 
include nuclear and electronic straggle. Currently 
PRAL uses the Biersack and Ziegler universal 
stopping powers C93. These are based upon a fit to 
a set of Hartree-Fock-Slater calculations these 
have been compared to available experimental 
potential data and it has been found that this farm 
of universal stopping is the most accurate of the 
universal type functions to date C103. 

The determination of the spatial 
distribution of radiation damage is of particular 
interest to workers using ion irradiation to 
produce an amorphous region in the surface of 
single crystals so that subsequent implantation 
will avoid channelling effects. Before an estimate 
of the dose and energy of this preamorphisation 
irradiation can be made, however, simple 
estimates of the damage profile are needed. 
Adequate approximations to find energy deposition 
profiles from ion implantation range profiles have 
been described by Gibbons CUD and Fritzsche C12D. 
In both of these previous treatments, severe 
approximations were made as to the shape of the ion 
energy distribution C113 or the stopping power 
C12D. These approximations give rise to 
inaccuracies and to the creation of a low energy 
limit of validity for the procedures. It is the 
purpose of the following to describe the method 
currently used by the PRAL.ED algorithm to obtain 
energy deposition profiles from projected range 
data. The procedure is such that it allows 
calculation even at quite low energies and fewer 
approximations are enforced. 

Energy Deposition Distributions. 

To obtain a damage distribution, we must 
calculate the fraction of the initial ion energy, 
which is ultimately transferred to the solid by 
elastic (nuclear) collisions. The energy transfer 
(but not the energy transport) of the recoils can 
be included to allow for the reduction in overall 



249 

nuclear energy deposition due to electronic energy 
loss of the recoils themselves. There have been 
some studies of the effect o-f ignoring the recoil 
transport and these effects can be significant in 
some cases C13,143. Work is currently under way to 
include the effects of recoil transport utilising a 
second stage PRAL calculation to determine the 
range of the recoils. For the purposes of the work 
presented here, we will assume this to be 
relatively minor. 

The energy loss of the incident particle per 
unit path length, ds, is known (St) and this can 
be split into two separate terms Sn (nuclear energy 
lass) and Se (electronic energy loss). The unknown 
is the energy loss per unit length, dx, 
perpendicular to the surface. This function of x 
will determine the damage distribution. The 
relation between these two energy loss functions 
has been given by Gibbons E113 as: 

EO 
(dE/dx)h* = J P(EO,E,x)*Sn(E)*ds/dx*dE (1) 

0 

where EO is the initial energy of the incident ion 
and P is the probability that the ion will have an 
energy E at depth x. 

This gives the energy deposited by the ion 
in nuclear collisions to the recoils. To find out 
how much energy the recoils themsleves actually 
deposit in nuclear collisions, we must multiply 
the distribution over energy by v(E) - the fraction 
of energy which recoils transfer to the solid by 
elastic collisions. Thus equation 1 becomes: 

EO 
(dE/dx)A = J P(EO,E,x)*Sn(E)*ds/dx*v(E)*dE (2) 

0 

Similarly it is possible to evaluate the 
inelastic energy loss (dE/dx) due to electronic 
collisions of both the recoils and the ion: 

EO 
(dE/dx)e = J P(EO,E,x)*Se(E)*ds/dx*dE (3) 

0 

Clearly these two equations must satisfy the 
normalisation condition: 
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OO 

f ((dE/dx>„ + (dE/dxV >dx = EO 
O * * 

(A) 

Gibbons CI 13 method of solution Mas to 
approximate the -function P(E0,E,x) by a rectangular 
distribution and to set v(E) to a constant. The 
integral in equation 2 is then reduced to the 
integration of the stopping power. Gibbons CUD 
gives a graphical representation of this integral 
based upon Firsov C153 stopping for boron into 
silicon. For evaluation of this and other systems, 
this proves to be severely cumbersome as values 
must be determined from the graph. Fritzche C123, 
on the other hand, assumed P(E0,E,x) to be a 
gaussian and approximated the energy loss function 
by the addition of two step functions. This yields 
a solution in terms of error functions which are 
readily available in tables. This method of 
solution has the disadvantage that, in order to 
model the energy loss function as two step 
functions, one can only consider cases above the 
nuclear stopping power maximum. This generally 
limits the calculation to fairly high energy. Also, 
the constraint on P(E0,E,x) to be gaussian is 
somewhat restrictive. 

Here, we will fallow along similar lines to 
Gibbons C113 in determining the energy distribution 
of the ions in the solid P(E0,E,x). We will assume 
that at depth x=0 (the surface) all ions enter with 
an initial energy EO. Further, when the ions have 
no energy (E=0>, they will form the range profile 
as a function of x. Thus the energy distribution 
function P(E0,E,x) must spread from this initial 
manoenergetic state to the final range profile as 
shown in figure 1 (after Gibbons C113 ) below. 

J(E-E.,xl 

Figure 1. 
After Gibbons, The variation of 

Energy Distribution Function with 
depth, x. 
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Similarly to Fritzsche C123, we will assume 
that the energy distribution -function will be 
gaussian for fixed energy and two half gaussians 
"far fixed depth (see figure 2 below). We will also 
assume that the standard deviations <Or<El»E0>, 
«7Cxl,E0) and aJ.<xl,EO)> and the means <EKxl,EO>, 
R(E1,E0>) of these distributions can given by the 
simple form:. 

C£<E1,E0> = CTU-E1/E0) 
O7(X I ,EO) = EO(xi .cr / ( (x-cr ).x") 
Ofc(xl,EO) = E 0 ( x l . O - / ( (x+OT ) . " ) 
R(E1,E0) = ~ ( 1 - E 1 / E 0 ) 
E l ( x l , E O ) = E O ( l - x l / x > 

(5) 

I 

where T? and o"are the range and standard deviation 
of the ion range profile. 

With these approximations, one can derive a 
general form for the energy distribution function 
P<EO,E,x) as fallows: 

20S 
P(EO,E,x) = 2 (<»;+ «3J.) 

Of E < El(x,EO) 
iCE-El(x,E0)3X( 20̂ *- J. ...(6) 

where <£ " E > El(x,E0) 

RgureJ , Energy Distributions Used In Calculations 

7/M 

\ 1 *„ 
•K.(E,,Eo) 

* Enetw D'strihiHnn Ftr Fixed 

D jPM* i l 

2 Half-Gaussians 

cflO,Eo) 

Frizsche C123 here took an average of o and 
o to enforce P(E0,E,x> to gaussian form. Also in 
this earlier work v(E).ds/dx was considered to be a 
constant. In this work we will assume that, for 
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most cases of interest, ds/dx will be constant 
with energy and thus be given by: 

ds/dx = xt/~ (7) 

where xt is the total pathlength of the ion -
this is easily evaluated as the integral 
of the stopping power - this is evaluated 
as routine in PRAL. 

To evaluate the fraction of energy deposited 
in nuclear collisions, we use the method of 
Lmdhard et al. C16D using a numerical 
approximation C173 to the universal function g( ): 

v(E) = l/<l+k.g(£)) (B) 

g<f> = 3 .40081 ' / * + 0 .40244£ J /* + £ 

= 0 . 1 3 3 7 . Z2 * < Z2/M2) V* 

E.a / (Z2 .e ) 

<9 7T1/(12B.Z2> ) S .a.0/fi? 

where aO is the Bohr radius, e is the 
electronic charge, Z2 and M2 are the atomic number 
and atomic mass of the recoiling particles. 

The above equations can be combined and the 
resulting integrals .solved numerically by dividing 
the energy distribution into a number of parts, 
treating the stopping power as constant at each 
division. thus expressing the integral of 
P(E0,E,xl) over the energy division as an error 
function. This results in the fallowing 
summations: 

2xt.Qj 
(dE/dx)ft =T?(oj+0S.) 

/ l E i - E m ' 
- erf (, j7tre )y. 

f <Ei+l-El)\ 
Cerf ( /^Oe 

Sn(Ei).v(Ei) 

(dE/dx)e = x"«fj + <>£ 
2xt.Qfj. /<Ei + l-El)\ 

/Pot j 
— erf ( ~W^i 

{erf i„ T2^ 

Se(Ei) 

) 
<Ei-El)\ 

These equations, together with equation 4, 
can now be used to determine both electronic and 
nuclear energy deposition profiles. From the 
nuclear energy deposition profile, it is a simple 
matter to convert to displacement damage profile, 



253 

N d ( x ) , by u s i n g t h e m o d i f i e d K inchen-Pease -formula 
C183: 

Nd = KD. ( d E / d x ) n / ( 2 E d ) <10) 

where KD is the displacement efficiency of the 
the order 0.8; 
Ed is the displacement energy of the order 
10-50 eV. 

Results and Comparisons. 

We have chosen to compare the energy 
deposition profiles obtained by the method outlined 
above to those generated using the Monte Carlo code 
TRIM Civil. This code follows individual ion 

cWOW/ Sb*—Si 

Figure 3. Comparison of TRIM (histograms) 
and PRAL.ED (smooth curves). 
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trajectories, allowing the particles to interact 
through a series of binary collisions. The stopping 
powers used in this programme are the same as those 
used in the PRAL code. 

Shown over in -figure 3 is a comparison o-f 
the energy deposition and range profiles as 
predicted by TRIM and using the procedure outlined 
above - PRAL.ED. Three comparisons have been made. 

Figure 3 shows that there is good agreement 
between PRAL.ED and TRIM, even in the case of the 
low energy irradiation. This would not have been 
possible using either the Bibbons C113 approach or 
the Fritzsche C12D technique. Also included on 
figure 3 is a displacements/nm per ion scale. This 
has been calculated from from equation 10. 

In conclusion, it has been demonstrated 
that this technique can produce realistic energy 
deposition functions. The primary advantage is that 
this code is fast - typically, 2 orders of 
magnitude faster than the Monte Carlo technique 
(assuming 1000 individual ion trajectories). 

Work is currently in hand to extend this 
code to allow layered structures and to include 
recoil motion. 
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