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SUMMARY 

This article describes a way to construct a vector function 
which matches given constant tangential components on all the 
edges of a finite element mesh. For this purpose, a set of 
vector basis functions is defined, each belonging to an edge 
of the mesh. The formulae are given for hexahedra, tetrahedra, 
quadrilaterals and triangles. 

The idea is applied to the continuity equations of the 
semiconductor model, here formulated as div(a grad u) = R. The 
result is a method which reduces in 1-D to the Scharfetter-
Gummel method. For the special case a = constant, a normal 
finite element method is obtained. In the limit for vanishing 
element size, the method converges to standard FEM. 

The observation is used that if has definite advantages to 
consider J = a grad u rather than grad u as constant between 
two mesh points. This allows to express the tangential 
component along each mesh edge accurately in the coefficients 
and unknowns at the ends of the edge. Existing methods of the 
pipe space type express the equation div J = 0 in these 
discrete edge values. This leads to severe restrictions on the 
shapes of the allowed elements. 

After forming a function for J which matches the edge values 
and is defined in the wole element, the condition on the 
divergence can be formulated in its standard variational form. 
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1. INTRODUCTION 

The continuity equations of the semiconductor model, can be 
formulated in the form: 

div(a grad u) = R 

The function a(x) may vary rapidly, but is positive for any 
x. For the .1-D case it has been pointed out [1] that it is 
better to approximate J = a grad u as constant between two mesh 
points, than grad u, as would follow from standard linear 
finite elements. 
Assuming that log(a) can be well approximated by a linear 

function, J can be evaluated without having to approximate 
grad u accurately. This allows a relatively coarse mesh to be 
used. 

In more -dimensions, there is not an immediate extension. 
Ideally the 1-D approach should be applied in the direction of 
the vector grad a [2,3]. However, since this leads to practical 
problems, the general approach is to apply the idea to the 
tangential components of J on the edges in the mesh [4]. 

One approach is to leave the value of J undefined inside the 
elements and consider the so called pipe space, consisting of 
all edges in the mesh, each of which has an associated width. 
The condition on the divergence of such a discretely defined J 
is formulated as a weighted sum of all edges ending in a 
vertex. This leads to unpleasant restrictions on the element 
shape. It seems that for triangles all angles must be sharp and 
for quadrilaterals the vertices of each one must lie on a 
circle [5]. 

Another proposition [6] is to define the current inside the 
element differently for each test function. Although this can 
be shown to converge, it leaves an uneasy feeling. 

The following sections show the full vector J can be 
interpolated, such that the tangential components match exactly 
the ones formulated through 1-D integration along each edge. 
The divergence condition can then weakly be imposed in the 
normal way. As weighting functions, the normal nodal functions 
are used and integration by parts is performed. A box scheme is 
also possible [3], but not considered here. 
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For the interpolation, vector basis functions are needed, 
defined within an element, which have a constant tangential 
component along one edge and which are normal to all other 
edges in the element. 
The construction of the functions is such that gradients of 

the nodal functions can be represented exactly. Actually the 
gradients of the nodal basis functions are just the sum of the 
basis functions for the edges that end in the node, with a 
possible minus sign if they are oriented away from the node. 

It will be shown that in 3-D not only on the edges, but 
actually on the whole surfaces, the tangential components are 
continuous across element boundaries. Normal components are not 
continuous, but this is not worse than for standard finite 
elements. 

The functions will be defined for hexahedra, tetrahedra, 
quadrilaterals, and triangles. A more theoretical background to 
the idea of partially continuous elements is given in [7J. The 
formulae for the functions on tetrahedra can be found in [8]. 
The extension to hexahedra and an application of the elements 
to the calculation of eddy currents can be found in [9]. 

In the present article, basis functions are considered with 
constant components along edges. An immediate extension is to 
have linearly varying components. 

Along the same lines as done here for given tangential 
components on the edges, a set of vector basis functions can be 
constructed to match given currents passing through the faces 
in normal direction. The form is given as a remark at the end. 

2. THE FORMULATION 

To complete the basics for the formulation, set v = In a. 
With a subscript i and j to denote the various values at the 
end points of the 1-D interval, the approximation of J by a 
constant and v by a linear function results in: 

x - x. 

exp( Vj + (Vj - vi) ) (grad u) = J 
X. - X. 

3 i 
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Division by the exponential, integration from x. to x. and 
some rearranging gives: 

V. - V. U. - U i 

exp(-v;.)-exp(-vi) x.. - xt 

Here only values at the end points of the interval occur and 
the transition to 2-D or 3-D can be made. When reading for J 
its tangential component on an element edge and interpreting 
x. - x. as the length of the edge, this formula remains valid. 

Now for each edge, a constant A.. is defined, where this time 

i and j stand for the end points or the edge: 

v. - Vj - lnCa./a^ 

Ai3 exp(-Vj)-exp(-vi) 1/â  - 1/a. 

It can be shown that the value of Aj. is always between â ^ 
and a. and that A.. = A.j. The value can be extended by 
continuity if a. = a., in which case Aj. = a.̂  = a.. 

In the next section, for each edge a basis function Wj.. is 
defined, which has a constant tangential component on the edge 
in question and a tangential component 0 on all other edges in 
the mesh. Using these functions, write: 

J(x) = £ <Aij wij<x> <uj " ui>> 
edges 

The division by the length of the edge is taken care of by 
the normalisation of the functions W^., which is such that they 
integrate to one along their edge. The definition of the edge 
basis function orientates the edge. Taking the reversed 
direction, changes the sign, so: W.j = -W^.. 

Now the equation left is just div J = R. After multiplying by 
the standard weighting functions w^ belonging to the vertices 
in the mesh, and a formal integration by parts, this becomes: 

j J . grad Wj dV = J R vi dV 

For each w.,, this is an expression in the u. at the nodes. 
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If the A.. and R are really known, this leads to a linear 
system. The resulting matrix is generally not symmetric. 
Because of the implicit upwind character of the formulation, 
this is not surprising. 

In the full semiconductor model, the functions a and R may 
depend on the field, the currents or the concentrations. In 
that case a set of non linear equations is obtained. If the A^. 
are determined simultaneously from the field equation, a 
coupled system arises. 

For the 1-D case this formulation becomes the same as the 

well known Gummel-Scharfetter scheme. 

For the case a = constant, A.. = a for all edges, and the sum 

can be rearranged: 

£ (w^ (u. - Ui» » £ <Uj E V 
edges vertices edges of 

vertex 

The last sum runs over all edges ending in the vertex and by 
definition Wj. = -W^. As shown in the next section, it so 
happens that the last sum is precisely grad w., where w. is the 
normal basis function for the vertex in question. As a 
consequence J is the sum of u. grad w. for this special case, 
which is the standard finite element form. 

Also, if the mesh size goes to zero, every Aj. approaches the 
local value of a, and the method converges to the standard 
finite element method. 

3. THE VECTOR BASIS FUNCTIONS FOR EDGES 

3.1 Hexahedra 

3.1a Definition 

Consider isoparametric hexahedra, that is, each element is 
seen as the image of the unit cube under a trilinear mapping 
x(s), where x = (XpX^iX.,) and s = (s.iSnsSn) are three dimen 
sional vectors (Fig. 1). The mapping is defined by means of 
functions wi belonging to the corners. The point (1,1,1) on the 
unit cube has: 
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w8(s) = Sl s2 s3 

The others are obtained by forming all combinations under 
replacement of some s. by (1-s.). If P-,...,P„ are the corners 
of the hexahedron, the actual mapping is written as: 

x(s> = £ (w.(s) p.) 
Restricted to the element, also the inverse mapping s(x) 

exists. The surface s~ = 1 for example is the top of the 
element. So evidently grad s- is normal to the top face. 

First define the vectors: 

Vi = dxCsJ/dSj 

Since the functions x(s) are trilinear polynomials in s, the 
V. are bilinear and are readily calculated. Strictly speaking, 
they are defined on the unit cube, but the mapping allows to 
interpret them on the hexahedron. 
Geometrically the vectors V. can be interpreted as connecting 
the points on the opposite faces s. = 0 and s. = 1, which have 
the both other s. the same. In every point on an edge of the 
element in direction s., V. is the vector describing that edge. 

The Jacobian matrix ds/dx, which has grad s.. as rows, is the 
inverse of dx/ds, which has V. as columns, so: 

Vj.(grad st) = &i^ 

Fig. 1. The mapping x(s) transforms the unit cube into the 
hexahedron. Its inverse s(x) is a vector function on the 

original space. The equation s,(x) = 1 describes the top 
face. 
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This delivers an explicit expression for grad s.. For 
example, with "x" standing for the vector cross product and "." 
for the vector inner product: 

grad sx = (V2 x V3)/((V2 x V^.V^ 

Cyclic permutation gives the others. The validity of these 
expressions is easily checked. Note that the denominator is 
actually the Jacobian of the transformation and has, in any 
point the same value for all three gradients. 

The vector basis functions belong to the edges. The 
tangential component of the function for a certain edge must 
vanish on all other edges. The normalisation is chosen such 
that the integral of the function along the edge is one. 

Now the basis function for the edge where s 2 = 1 and s, = 1, 
so running along s,, is defined as: 

W(x) = s2(x) s3(x) grad s^x) 

On both faces s., = 0 (front) and s. = 1 (back) this vector 
function is normal to the face, so it does no contribute to the 
tangential components there; this includes all edges not 
running in direction s... On the edges in direction s1 to which 
this function does not belong, the product s 2 s, is always 
zero, so the whole function vanishes. On its own edge, 
s 2 s~ = 1 and the tangential component is found by 
multiplication by Vj/||V.,||. The denominator in the expression 
for grad s., is cancelled and the result is 1/||V.||, which is 
constant along the edge. 

3.1b Continuity across element faces 

With the help of the above, the proof of continuity across 
element faces follows easily. On all faces not containing the 
edge in question, the tangential components have been shown to 
vanish. From the remaining two faces, take for example the top 
face and the same W as before. The unit normal is parallel to 
grad s3: 

n = (V1 x V2)/||V1 x V2|| 

Strictly speaking, the decomposition of a vector into normal 
and tangential components is given by W = n(W.n) + nx(Wxn). As 
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usual just Wxn is interpreted here as tangential component. 
This is justified by the observation that continuity of nx(Wxn) 
across a surface is equivalent to continuity of Wxn. 
Substitution gives: 

(V2 x V3) <VX x V2) 
Wxn = s 2 s 3 x 

s2 s3 

((V2 x V3).V2)Vr((V2 x V3).V1)V2 

((V2 x V^.Vj) | |Vx x V21 | 

= - s 2 s3 V2 / \\V1 x V2|| 

All quantities appearing in this expression are continuous 
going through the top face to the next element. By simple 
symmetry all the other cases follow immediately. 

3.1c The relation between scalar and edge basis functions 

The notation used makes it surprisingly easy to establish the 
relation between the standard nodal basis functions and the 
edge basis functions. 
The ordinary scalar test function for the point 

s, = s 2 = s 3 = 1 is given by wR(x) = SjCx) s2(x) s3(x). Its 
gradient is: 

grad w„ = So s~ grad s., + s. s3 grad s 2 + s^ s,, grad s., 

W78 + W68 + W48 

where W7„, W g 8 and W,„ belong to the three edges ending in the 
point considered. The definition of the W orientates the edges. 
Edges beginning in a point appear with a minus sign. 

3.2 Tetrahedra 

Because all occurring functions are linear, they can be 
described directly in the real coordinates. All reasoning for 
consistency is straightforward in the vectorial notation used. 
The definition of the functions for this case as well as for 
triangles, can also be found in [8]. 
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Fig 2. A tetrahedron, 
with some notations; 
P. are the corners, 
V.. the edge vectors, 
M.. the midpoints of 
the edges and M.., the 
centres of the faces. 

The corners of the tetrahedron are denoted by P,,P2,P~,P4 and 
the position where the functions are evaluated by X. Some more 
notation is used to make the formulae look symmetric (Fig. 2). 
They are the centres of gravity of the edges and faces, the 
edge vectors and the volume: 

M.. = ( P i + P j ) / 2 M . . k = ( P . + P . + P k ) / 3 

V. . = P. - P. V = V 1 2 x V 2 3 . V 3 4 / 6 

The basis function for the edge from point 1 to 2 is: 

W 1 2 = V 3 4 x (X - M 3 4) / 6V 

The others are similar, where V. . or V.. has to be chosen to 
determine the orientation correctly. By definition W., = -W... 

For the proof of the demanded properties consider V.~ for the 
edge from point ?, to point V„> For any point X in the faces 
(PpP^P,) and (P2iP3,P,) the cross product delivers a vector 
normal to the face. This includes all edges but (Pj,,P„)f where 
the tangential component times the length of the edge is: 

W12 • V12 = V34 x <X - M34> • V12 ' 6V 

For any X on edge (P^P,,) this is 1. 

The scalar basis function for node 1 and its gradient can be 
written as: 

wx = (X - M 2 3 4) . V 2 3 x V 3 4 / 6V 

grad w., = V 2 3 x V"34 / 6V = W 2 1 + W 3 1 + V^ 
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The proof of the last equality Is most easily seen by 
geometric interpretation. The length of V„3 x V~, is just twice 
the area of face (P2,P3,P,). This triangle can be split by 
connecting the centre to the corners. The double area becomes: 

V23 x <M234 - M23> + V 34 x <M234 " M34> + V 42 x (M234 M 4 2) 

Now realise that V 2 3 + V 3 4 + V 4 2 = 0, and add this sum 
multiplied by X - M 2 3 4 to the previous expression, effectively 
replacing M 2 3 4 by X. 

3.3 Quadrilaterals 

The functions for quadrilaterals can be produced 
ones for hexahedra by simply setting s- = 1 and V3 = 

from the 
e~, the 

unit vector perpendicular to the plane. The forms and their 
relations are written out completely here. The four corners and 
the edges are counted cyclically, although in a program it 

would probably be simpler to orientate all edges along the 
parametric main directions. 

w12~ 
U -w23~ 

(1-s 
s 

W 34" 
W41=-(l-s1)grad s 

2)grad Sj 
grad s 2 

grad Sĵ  

2 

w1=(l-s1)(l-s2) 
w2= Sl (l-s2) 

W 3 = sl s2 
V(1-Sl> s2 

grad w1=W41-W12 

grad W2=W12"W23 
grad v3=W23-W34 

grad w4=W34-W41 

Fig 3. A quadrilateral 
with the vectors V. 
and V2 in a generic 
point. The edges are 
counted cyclically. E„ 
is the unit normal to 
the plane. 

3.4 Triangles 

Here the corners and edges are counted cyclically. With E the 
unit vector normal to the triangle, A its area and the same 

notation as for tetrahedra, the function for the edge from 
point P^ to P„ is: 
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W 1 2 = E x (X - P3) / 2A 

The standard basis function for node 1 and its gradient are: 

v1 = (X - M 2 3) . E x V 2 3 / 2A 

W12 + W31 grad v1 = E x V 2 3 / 2A 

The proofs of all properties are trivial. 

Fig 3. A 
with some 

triangle, 
notations; 

P. are the corners, 
V,, the edge vectors, 
M,. the midpoints of 
the edges. E denotes 
the unit normal to the 
plane. 

The complete form for J within an element is for this 
simplest case: 

J = A 1 2 W 1 2 (u2-u1) + A 2 3 W 2 3 (u3-u2) + A 3 1 W 3 1 (Uj-u^ 

The separate coefficients for u., u? and u- are: 

A31 W31 " A12 W12' A12 W12 ~ A32 W32' A23 W23 ~ A31 W31 

The gradients of the weighting functions w,, w2 and w~ are: 

W31 " W12' W12 " W32* W23 " W31 

From this example can be seen that generally the matrix is 
only symmetric if all three A., are equal. 

4. FURTHER REMARKS 

Making some vertices of a hexahedron coincide, other shapes, 
such as prisms and pyramids can be created. In this process the 
mapping x(s) becomes singular at those vertices. However, the 
integrals in the variational formulation are still defined and 
by using internal integration points, such as the Gauss points, 
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practical problems are circumvented. This can also be applied 
to the edge elements. All functions associated with edges that 
have been reduced to length 0 must be dropped. 

A direct extension to higher order exists. Instead of a 
constant component along each edge, a linealy varying component 
is taken. Each edge basis function is split into two, belonging 
to both ends of the edge. For hexahedra or quadrilaterals, they 
are obtained from the simple edge function by multiplication 
by s. and 1 -s., where i is the applicable mesh direction. For 
tetrahedra or triangles the multipliers are the scalar basis 
functions for both ends. 

Following the same lines of reasoning as used before for 
tangential components on edges, another set of vector basis 
functions can be defined for normal components on the faces of 
the element. 
For the hexahedron top face, where s, = 1, using the same 

notation as in section 3.1, the function is: 

W = s, (grad s^ x grad s„) 

= s 3 V3 / « V l x V2).V3) 

The integral of the normal component over the face to which 
the function belongs is just 1. A geometric interpretation is 
that the vector is just in the direction of the isoparametric 
coordinate line from a point on one face to the corresponding 
point on the opposite face and the length diminishes linearly 
from one to the other. 
If six net currents are defined on the faces with zero sum, 

the composition appears to be exactly non divergent in the 
whole volume. 
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