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A method is described for obtaining the computational 
advantages of lumped element modeling, in time-dependent 
circuit simulations, without the need of choosing a model 
topology or element values by ad hoc means. The initial 
overhead is comparable to that of computing a stationary I-V 
characteristic. The method is useable whenever the quasi-
stationary approximation is physically acceptable, for any 
particular device. In can easily be combined with ' full 
simulation of those devices in which the quasi-stationary 
approximation cannot be used, and can be used in unusual 
operating regions without special modifications. An example 
of the use of the method and a comparison with conventional 
simulation is included. 

I. REVIEW 

To first order in the time increment h, a linear, 
inhomogeneous relation of the form 

(1.1) I = A(V - VQ) + G 

exists relating the terminal voltages and currents of a 
semiconductor device. In (1.1), I is the vector of terminal 
currents, V the terminal voltages, and VQ the terminal 

voltages at the previous time level; these are m-vectors 
for a device with m external contacts. The m x m matrix 
A, hereafter called the admittance matrix, and the m-vector 
G are computable from a knowledge of the internal device 
variables, the carrier densities and electrostatic potential 
distributions in particular. A derivation is given below, or 
may be found in C3]; for the moment, it suffices to note 
that these quantities also depend on the time step h. 
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Thus the quantities A,G, and VQ completely describe 

the device, in this approximation, as seen by the outside 
world, and this suggests a simple procedure for time-dependent 
simulation of multiple, coupled devices, while performing the 
internal computations for each device separately. First for 
each device in the network, the quantities A,G are 
computed, using the latest available approximations for the 
carrier densities and electrostatic potential functions. Then 
equations (1.1) are assembled and solved simultaneously with 
the Kirchoff's laws relations for the network. As the matrix 
A is symmetric, this can effectively be done using Thevinin 
equivalent circuits for the devices and basic circuit 
analysis methods £2,31. Solving this system yields, among 
other things, the updated terminal bias voltages for each 
device. And given the updated terminal voltages, the 
internal variables for each device can be updated separately. 
Computationally, this final step is the expensive one, but 
it is necessary if the quantities A,G are to be found at 
the subsequent time level and the process continued. 

To clarify this, we show how the quantities A,G can 
be obtained. Differentiating the Poisson equation with 
respect to time and using the two carrier continuity equations, 
we obtain the well-known equation of total current continuity, 
i.e., 

(1.2) V • (eVi|)t) + V -((iyH-uvv)VtJ))- y, (u Vu-u Vv) = 0 , 

in which ifsu.v are the e l ec t ro s t a t i c po ten t ia l , e lec t ron 
density, and hole density; e i s the d ie l ec t r i c constant 
a n d U

U.VV the respective ca r r ie r mobi l i t ies . A backward 

difference i s used in the displacement current term for 
s t a b i l i t y . Thus we obtain 

(1 .3) V • (eV(—£-)) + V- ((uuu+uvv)VijO- V.(puVu-u Vv) = 0 , 

where iJiQ is the electrostatic potential function at the 

previous time level. 

Equation (1.1) is essentially a consequence of (1.3) 
and the boundary conditions. There are at least two ways 
to proceed at this point; we show one method here, appropriate 
for models in two space dimensions, which has been 
successfully used in computations for some time. Equation 
(1.3) is rewritten 

(1.4) V- (aVdfi -^J- f ) = 0 , a = V^u+y^ + | , 

f =uu(Vu-uV^Q) - uv(Vv+vV*0). 
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We introduce normalized stream functions 9,,..•> m̂_i» 

the amplitudes of the current components J^,..., m̂_i»
 anc* 

an interaction term $ , so that an expression for the total 

current density is 

m-1 
(1.5) ovOJi-ifj ) - f = T. j Vxe + Vx<j, ; 

i=l 

dividing by a and taking the curl of both s ides , we can 
choose the 9 . , to sa t i s fy 

(1.6) V X (__1) = o, i = l m-1; V x ( ^ + i ) = 0 . 

Equations (1.2-1.6) hold in the device interior ft; 
the boundary 8fi is assumed divided into contact and 
insulating segments, 8^ = 8fi U 8J22 U ... U 8^m. ^ N 

respectively, where 8ft. is the j-th contact. No 

tangential current flows on 8fi and no normal current at 

8nN. Using (1.5), we can choose boundary conditions of the 

form 

(1.7) v •V9i = 0, i = l,...,m-l, v • Vc[> = 0, on 8^; 

Q± = constant, i = l,...,m-l, • = 0 on each segment of 

8J}j,, where v is the unit normal vector at each point on 80. 

The current/voltage components and boundary values of 
the 8 are specified in terms of a constant matrix Q, of 

dimension m x m-1, of rank m-1, with vanishing column 
sums. Then the change in the boundary value of 6^ as 

contact an. is crossed in counterclockwise direction, is 

given by Q , j = l,...,m, i = l,...,m-l; the Q± 

are thus determined up to an arbitrary additive constant. 

The 9. can be obtained from (1.6), (1.7); 4> need not 

Then multiplying (1.5) by ^ 

integrating over the device area, we obtain 

be computed. Then multiplying (1.5) by VxQ./a and 

(1.8) ;/ Vx9,-V(ij>-<J<n) - // - f • Vxe, = 

m-i vxe -vxe. vxe..vx^ 
= E J, // 1

 n
 3 + // J 

i-i ± a ° n ° 
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In (1.8), the first integral depends only on the boundary 
values of ^t^nt ana" 6.5 we denote the second integral 

by H. and the third by Z ., i,j = 1 m-1; the 

last integral vanishes identically. We rewrite (1.8) in 
vector form 

(1.9) W - WQ = H + ZJ, 

where W is the vector of voltage components, W„ the 

voltage components at the previous time level, 

H = (nx
 H

m_!>
T » Z - Cz±jl , and J - (Jj_ J ^ ) • 

These voltage and current components are related to the 
terminal quant i t ies by 

( 1 . 1 0 ) I = QJ , W = QTV, WQ = QTVQ . 

Finally, multiplying (1.9) by QZ_1 and using (1.10), 
we obtain (1.1), with 

(1.11) A = QZ_1QT, G = - QZ-1H. 

We note that Z is positive definite symmetric, so that 
A is positive semidefinite symmetric, with kernel 

T 
(1,1,...,1) . As G is in the range of Q, the sum of its 
components vanishes as required. More details of this 
procedure are found in C3]. 

II PROPOSED METHOD 

In practice, we compute successively the stream functions 
6., i = 1 m-1, the "impedance matrix" Z, the vector 
H, and from them the quantities A,G from (1.11). These 
quantities depend on the internal arrays (Ji,<J» ,u,v, and the 

time step h. As previously noted, it is computationally 
expensive to update these internal device arrays at each 
step; any method giving reasonable approximations to Z,H 
without doing this will thus result in a dramatic improvement 
in computation speed. 

Our approach is to tabulate values of Z,H, as 
functions of the bias voltages and of the time step h. To 
build this table, the computations described in section 1 are 
performed using the stationary arrays ty = rj/0,u,v 

corresponding to each bias voltage. The computation to 
build this "impedance matrix table" is slightly more complex 
than that of computing a stationary I-V table, since at each 
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bias point, after solving the stationary problem for the 
arrays IJJ,U,V, the computation of section 1 is performed for 
several values of time step. (In practice, however, this 
extra computation is not expensive relative to that of 
solving the stationary problem, as the elliptic systems for 
the stream functions tend to be well-conditioned and easily 
solved by iterative methods.) 

Then at each time step of a transient computation, we 
simply interpolate Z,H from the stored table, as functions 
of the present device bias voltages and the time step h. 
The internal variables for devices treated in this manner never 
need to be obtained as functions of time. 

Obviously there are important limitations to the use of 
such a method. An intrinsic approximation in this method is 
that the device is quasi-stationary, i.e. that the internal 
speed of the device is high compared with that of the circuit, 
so that the internal device arrays are always close to their 
stationary values, even though the bias voltages are 
changing as functions of time. This approximation appears to 
be used in all present "lumped element" models. Clearly 
there are cases in which this approximation is not justified, 
for example a device "struck" by a pulse of ionizing 
radiation, or a device subjected to an instantaneous change 
in its bias voltages. However, this method can be combined 
with ordinary time-dependent simulation in studying the 
response of full circuits. For example in studies of 
radiation induced upset of memory circuits, we can use the 
method of section 1 for the struck device and the above 
method for the other devices in the circuit, still achieving 
a substantial savings of computation. This type of 
computation was, in fact, the principal motivation for the 
development of this method til. 

Furthermore, the effects of the quasi-stationary 
approximation can be isolated and studied by this technique, 
as we show in an example below. 

A second source of error in this method is that 
associated with the interpolation for Z,H, as functions of 
the bias voltages and h, between the tabulated values. This 
error can, of course, be reduced by tabulating Z,H at more 
points; in practice, a compromise must be chosen between the 
initial overhead (which can be amortized over many 
time-dependent computations) and the interpolation error. 

Obviously, how these interpolations are done will affect 
the size of these errors. The results reported below were 
obtained using simple, piecewise linear interpolation in the 
bias voltages and in log h. We have thus far obtained no 
improvement with higher order methods, presumably because Z,H 
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were not tabulated at sufficiently many points. An 
experiment was performed in which Z"1 (equivalent to A) 
was interpolated instead of Z; the results were 
substantially worse. There are, however, some things which 
can be done to modestly reduce the interpolation errors. If 
the values of h which will be used for time-dependent runs 
are known in advance, then Z,H can be tabulated at 
precisely these values of h and this part of the 
interpolation avoided. Alternatively, it has been noted that 
Z tends to vary less rapidly, as a function of h for fixed 
bias voltages, than does H. The interpolation of H as 
a function of h can be avoided. Setting W = WQ, J = Jg, 

the stationary current component amplitudes, in (1.19), we 
see that J = - Z~-*-H is independent of h, even though 
Z,H are not. Thus if we tabulate J as a function of 

s 
bias voltage, and interpolate Z as a function of bias 
voltage and time step, obtaining Z(h), we can find 

(2.1) H(h) = - Z(h) Js. 

This procedure also assures that the computed asymptotic, i.e. 
stationary, values of the device currents will be independent 
of h. 

The main advantage of this method, as compared with 
traditional lumped element models, is that one does not need 
to specify the topology or the element values of the model. 
These are automatically obtained. Results obtained by this 
method can be directly compared with those obtained by 
conventional transient simulation, with only the two sources 
of error described above between the results. Finally, the 
method can be used in problems where a device enters an 
unfamiliar region with respect to its bias voltages. For 
example, in the sample computation reported below we use this 
method with IGFET models with substantial forward bias on 
the source-substrate junction. 

Ill A SAMPLE PROBLEM 

Here we present the results of a sample problem, selected to 
demonstrate the capabilities and limitations of the proposed 
method. The circuit topology for this problem is shown 
in fig. 1. Two silicon n-channel IGFET devices of 
conventional geometry (metallurgical channel length 0.8u, 
substrate doping 5 x 10^6 cm~^, oxide thickness 250 R, and 
width lOu) are coupled by their substrate contacts, together 
with two dependent current sources. It is perhaps not 
obvious whether this structure could act as a memory element, 
i.e. whether it has multiple stable stationary states, but 
if it does one of the source-substrate junctions is likely 
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to become strongly forward biased, making the use of a 
conventional lumped-element model difficult. 

I = f(0.9-V2,3-V4) 

V ' f(p, q ) =1000-p-minimum (p,q/3) 

Fig. 1: Circuit topology 

Also shown in fig. 1 are the device and node numbers, 
for reference in the figures below, and the initially applied 
voltages. Voltages are in volts, currents in microamperes 
resistances in ohms and time in nanoseconds throughout. 

The evolution of this circuit, given these initial 
voltages, was calculated twice, by the two methods described. 
In the first calculation, the two devices were included as 
two-dimensional models and their internal arrays updated at 
each step, as described in section 1. The initial values of 
the internal arrays corresponded to stationary conditions for 
the given bias voltages. The results from this computation 
are indicated by "R" or "Real" in the figures below. 

In preparation for the second run, the impedance matrix 
Z,H was tabulated, assuming stationary conditions, as a 
function of drain (to source) voltage, substrate (to source) 
voltage, and time step. The gate voltage was held constant 
at one volt throughout, consistent with the circuit diagram. 
The drain voltage was varied uniformly in 0.5 volt steps from 
zero to 3V; the values of substrate voltage at which Z,H 
were tabulated were 0, 0.5, 0.7, 0.8, 0.85, and 0.9V. The 
values of time step began at 0.001 nsec and were successively 
increased uniformly by factors of ^2. The values of these 
parameters occurring in the computation lie within these 
limits, so that no extrapolations were needed. 

The second computation of the transiet response of the 
circuit was performed by the method described in section 2, 



356 

i.e. interpolating the values of Z,H for each device at 
each time step. The results of this computation are 
designated by a "Z" in the figures below. 

The improvement in computation speed by this second 
method is at least a factor of several thousand, ignoring the 
time required for building the impedance matrix table. A 
precise figure was not obtained, because the computation time 
for the second method is dominated by overhead. The same 
values of time step were used for both computations, so the 
number of time steps is the same in the two cases. 

The results of the two computations are compared in 
figs. 2-6. The two substrate voltages as functions of time 
are shown in fig. 2; the two drain voltages in fig. 3. The 
gate and drain currents of device 1 (the device ending up in 
the "on" state) are shown in fig. A, and those of device 2 
(ending up in the "off" state) in fig. 5. The substrate 
currents for both devices are shown in fig. 6. 
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Fig. 2: Substrate voltages as functions- of time 
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Fig. 3: Drain voltages on functions of time 
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Fig. 4: Drain and gate current for device 1 
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Fig. 5: Drain and gate current for device 2 

'0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

Time (nsec) 

Fig 6: Substrate currents as functions of time 
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The discrepencies in the results for relatively large 
time, say t _> 0.3 nsec, arise from the error of 
interpolation in the impedance matrix table. For such times, 
the circuit is nearly in a stationary state and the quasi-
stationary approximation used in tabulating the Z,H arrays 
is clearly well justified and not a significant source of 
error. These errors could be made smaller by tabulating 
Z,H at more bias voltage points. 

At earlier times, both sources of error contribute to 
the differences in the results. For example, in fig. A, 
the abrupt change in slope of the two "Z" curves at 
approximately 0.15 nsec is also interpolation error, caused 
by the voltage at node 2 (the substrate of device 2) crossing 
the table value 0.5V at this time. In fig. 6, the large 
differences between the "R" and "Z" curves around t = 0.05 
nsec presumably includes a substantial contribution from the 
quasi-stationary approximation - this will be discussed 
further below. In fig. 5, both pairs of curves show sharp 
changes in slope between t = 0.15 and t = 0.18; the 
qualitative behavior is presumed correct, as it also appears 
in the "R" curves. The significant difference in^the drain 
current curves in fig. 5, between t =0.05 and t = 0.15, is 
again primarily interpolation error, as we shall now describe. 

IV ISOLATION OF THE QUASI-STATIONARY APPROXIMATION 

As is well known, there are two basic sources of error 
in lumped element models. One is in choosing a model 
topology, or in interpolating in tables. In principle, this 
error can be made very small by additional computation and 
perhaps cleverness in choosing a model. The second 
approximation comes from assuming that the device is in a 
stationary condition for purposes of evaluating the model 
parameters (or impedance matrix in the present terminology). 
This approximation appears to be intrinsic, in the sense 
that no realistic alternative is known. Since no practical 
method is known for reducing this second source of error, 
short of abandoning lumped element modeling entirely, it is 
desirable at least to have a method for appraising its 
magnitude. The method described in section 2 permits this 
to be done by an additional computation, which we now 
describe as applied to the sample problem discussed in 
section 3. 

From figures 5 and 6, we note that for t £ 0.15 
substantial differences are observed in the values of the 
drain and substrate currents of device 2, as computed by the 
two methods. These two quantities were selected for 
further study. We want to know how much of these errors are 
due to interpolation and how much are intrinsic, i.e. the 
result of the basic quasi-equilibrium approximation. 
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To determine this, an additional computation is 
performed. At each discrete time level (up to 0.2nsec), 
a stationary solution for the device is obtained, using the 
bias voltages as obtained in the computation with the "real" 
devices. (This is not as expensive a computation as it 
might appear, as these bias voltages change relatively little 
between successive time levels, so that 2 or 3 Gummel 
iterations for each time level generally suffices.) Once 
these stationary internal arrays are obtained, the 
computations (1.6-1.9) are repeated, using these 
"quasi-stationary" internal arrays and the values of W,WQ,II 

as obtained in the "real" computation. Thus the only source 
of differences in the computed values of the terminal currents 
is that in the "real" case, the actual, transient arrays 
I/I,I/J.,U,V are used, whereas in the "quasi-stationary" case 

these arrays are the stationary ones for the same bias 
voltages. The difference between these results is thus 
precisely the effect of the quasi-stationary approximation . 

The results are shown in fig. 7. For comparison, we 
also show the stationary terminal currents at each point. It 
will be noted that these have no relation to the computed 
values by either method, which is an indication of the 
relative importance of the reactive part of the model if an 
accurate description of such transients is to be obtained. 
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Fig.7: The quasi-stationary approximation 
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The comparison is significantly different for the drain 
and substrate currents. For the drain current, the difference 
between the "real" and "quasi-stationary" models is relatively 
modest and decreases rapidly after about t = 0.07. (Thus in 
fig 5, most of the difference between the "R" and "Z" curves 
for the drain current is attributable to interpolation in 
the impedance matrix table. In contrast, a large, 
qualitative difference is observed in the substrate current 
results, up to about t = 0.09. This is the effect of the 
quasi-stationary approximation, and one is forced to conclude 
that such lumped element models could not be used if this 
portion of the transient response is to be obtained 
accurately. For larger times, we see that the 
quasi-stationary approximation becomes quite good, as 
evidenced by the approach of the two pairs of curves. This 
is of course expected, or the circuit begins to approach a 
stationary condition after the initial transient period. 

V. REFERENCES 

1. C. L. AXNESS, J. S. FU and H. T. WEAVER, "Two-dimensional 
simulation of single event upsets in SEU-hardened CMOS 
RAM cells," Proc. Fourth Int. Conf. on Num. Anal, of 
Semiconductor Devices and Integrated Circuits, J.J.H. 
Miller, Ed., Boole Press, Dublin (1985). 

2. V. BELEVITCH, "Classical Network Theory, "Holden-Day, 
San Francisco, 1968. 

3. M. S. MOCK, "Analysis of Mathematical Models of 
Semiconductor Devices," Boole Press, Dublin, 1983. 


