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ABSTRACT 

Proceeding from a natural extension of the one-dimensional 
Deal and Grove relationship [2], a Boundary Element based 
numerical model has been developed which is used to simulate 
the local oxidation of silicon in two dimensions. A simple, 
two-step approach has been adopted, to predict the kinetics 
of oxide growth in wet or dry ambients and at certain process 
temperatures. This involves steady-state linear diffusion 
of the oxidising species in the silicon dioxide, followed 
by a linear elastic analysis of the boundary motion. By 
devoting particular attention to the control of error-inducing 
mechanisms inherent in the discretisation of the space and 
time domains,a reliable and efficient computer code has been 
developed which provides excellent representation of this 
complex, moving boundary problem. 

1. INTRODUCTION 

There is an on-going demand upon the semi-conductor industry 
to continually increase the complexity and versatility of 
the integrated circuits produced. This necessarily involves 
a reduction in the dimensions of electronic devices, whilst 
maintaining their reliability of performance and improving 
the cost-effectiveness of the fabrication procedure. It is 
readily observed that the packing density of integrated cir­
cuits is limited by the intrusion of the field oxide beneath 
the nitride masking film, and so the understanding and control 
of the oxidation process is crucial to the advancement of 
technology in this field. 

In most commercial enterprises, the oxidation of silicon is 
a thermal process, during which the oxidising species diffuse 
through the oxide and then react with the high-purity silicon 
at the silicon/oxide interface. The oxidising species is O2 
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when oxidation is by dry oxygen, and H2O when oxidation is by 
wet oxygen. The chemical reaction at the silicon/oxide inter­
face is attended by a growth of the oxide which consumes the 
silicon substrate. Because of the density difference between 
silicon and silicon dioxide, there is an overall increase 
in volume, which results in the movement of the free surface 
of the oxide into the gas phase. 

Analytical techniques and long-established one-dimensional 
models (cf [2]), describing the kinetics of silicon oxid­
ation, have proved inadequate when confronted with truly two-
dimensional domains and the development of more sophisticated 
numerical models, together with the associated production 
of reliable and robust computer code, are vital pre-req-
uisites to the advancement of semi-conductor microtechnology. 

The current research programme seeks to model the 'bird's 
beak' phenomenon, and this paper describes the development 
of boundary element based software, providing a computer based 
numerical model of the oxidation of silicon, at process temp­
eratures within the range of elastic behaviour for the materials 
under consideration. 

2. PROBLEM DEFINITION 

The model proposed here for the two-dimensional oxidation 
of silicon concerns linear diffusion of the oxidising species, 
together with linear elastic displacement of the dioxide and 
nitride layers, involving the solution of two uncoupled boun­
dary value problems at each timestep. 

2.1 Diffusion of the Oxidising Species 

The initial part of the physical process is the diffusion 
of the oxidising species within the silicon dioxide. A lim­
iting assumption is that the effective diffusivity of the 
oxidant is spatially invariant and dependent only on the process 
temperature and partial pressure of the oxidant. For the 
purposes of this analysis it has also been assumed that all 
transient terms can be neglected, so we therefore consider 
a problem of linear, steady-state diffusion, as detailed below. 

Consider a sample of silicon covered by a thin pad oxide in 
the presence of a nitride mask. 

Figure 1 depicts the dioxide (fli) and nitride (̂ 2) domains 
at some intermediate state of the oxidation process. 

The problem may be defined thus: 

Solve | — (D —•) = 0 inside JJ. 
3x. v e 9xy 1 

1 1 

i = 1,2 (1) 
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Subject to the following boundary conditions: 

n 9 c 1 
D 7— = k.c 
e 3n 

r» 9 c r.C E"> 

De ^ - h(c-c ) 

D |£-0 e 3n 

on I\ 

on r. 

on r, u r. 
3 4 

(2) 

(3) 

(4) 

where, 

Note: 

c = concentration of the oxidising species in the oxide 
v 
c = equilibrium solubility of the oxidant in the oxide 

D = effective diffusion coefficient 
e 
h = gas phase mass transfer coefficient 

k = rate constant of chemical surface reaction 

n = unit outward normal vector 

c is related to the partial pressure of the oxidant in 
the gas via Henry's law. 

D is dependent upon temperature and pressure. 

k is a function of temperature. 

2.2 Modelling Kinetics 

Following the chemical reaction between the oxidising species 
and the silicon substrate, stresses are produced on the 
silicon/oxide interface by the non-uniform growth of the oxide. 
Since the silicon bulk is considerably more rigid than the oxide 
layer, a simplifying assumption is that of zero strain in the 
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silicon. This infers that the energy generated at the inter­
face is completely expended on the displacement of the silicon 
dioxide and a conformable deformation of the nitride mask. 

Figure 2 portrays a section of the silicon/oxide interface at 
some instant of time, t. 

SiO, 

n 

Si02 Produced in time 6t 

1V2 

"V1 
t + 6t 

Si 
FIGURE 2 

During a short period of time, fit, fresh oxide is produced in 
a quantity which is proportional to the flux of oxidant across 
the silicon/oxide interface. 

From the law of conservation of mass, the absolute growth, 
velocity of the silicon dioxide may be expressed in the 
following form: 

V(t) = ^ ^ n t ; Nl 
(5) 

where Nl is the number of oxidising molecules per unit volume 
of oxide. The absolute velocity may then be resolved into two 
constituent parts, viz: 

the silicon consuming velocity, which is defined as: 

k.c(t) 
Vl(t) = d 

Nl 
and the oxide expanding velocity, 

V2(t) = (d-1) *$& 

(6) 

(7) 

where d is the density ratio of SiO„:Si (=0.44), and the 
velocity vectors VI(t) and V2(t) are in the direction of the 
outward normal from the oxide at the interface. 



416 

2.3 Boundary Motion 

The proposed hypothesis is that the growth of a field oxide on 
a silicon substrate may be considered to be incrementally 
linear elastic over a certain range of temperature, conser­
vatively regarded as being below 960°C. The linear theory of 
elasticity for solids is based on the following two assum­
ptions: 

i) that the material is not stressed beyond the porportion-
ality limit. For most engineering materials, it is assumed 
that the proportionality limit and the elastic limit are 
coincident. A corollary of this principle is that the dis­
placement caused at any point in the material is linearly 
dependent on the magnitude of the applied loading. 

ii) that the change in the domain orientation due to the 
induced displacements is negligible. If the deflections 
change the domain geometry in a significant way, the manner 
in which the potential energy is stored in the material changes 
and the load increases will not then cause a proportionate 
increase in displacement. 

Great care should therefore be exercised in respect of the 
above maxims and their relevance to the current investigation, 
particularly with regard to the critical length of the time-
steps. 

The governing equation for the elastic displacement of the 
oxide and nitride layers may be written in terms of o, the 
stress field components. Ignoring body forces, we have: 

3a. 
1 1 = 0 i,j = 1,2 (8) 

3x. 
J 

We require a solution which satisfies the following boundary 
conditions: 

(9) 

(10) 

(11) 

i-1,2 

u . = V2 . .6 t 
J J 

u . = 0 -

o„ .n . = 0 
2j J - 1 

o. .n . = 0 
i j J 

J B T1 

je r4 

je r2 u r3 u r5 

where u- represents the vector of prescribed displacements 
and nj are the direction cosines of the outward normal with 
respect to the coordinate axes. Platte strain is assumed. 



417 

3. BOUNDARY ELEMENT FORMULATION 

The numerical methods most widely in use today are 'domain' 
methods, such as Finite Elements or Finite Differences, which 
seek to resolve the governing differential equations in their 
derived forms. Since the accuracy of these methods is 
directly related, inter alia, to the fineness of the discret­
ization mesh, it is inevitable that for most practical applic­
ations, large systems of simultaneous equations are generated 
during the solution procedure. 

The Boundary Element Method adopts the approach of integrating 
the set of differential equations analytically before pro­
ceeding to a discretization scheme. This technique has the 
effect of reducing the governing equations to a set of indep­
endent equations involving only the variable values on the 
boundary of the domain. Consequently, for a homogeneous 
region, any necessary discretization plan simply involves sub­
division of the surface of the body, and the solution is 
completely continuous inside the region. 

Thus, the dimensionality of the problem is reduced by one, 
with consequent simplification of the data preparation and 
considerably lower matrix reduction requirements, which more 
than compensate for the fact that BEM system matrices are 
fully populated or, at best, block-banded, and generally 
non-symmetric. 

Once the variable values have been computed on the boundary 
of the domain of interest, solution variables may then be 
calculated at any selected interior point, and high resol­
ution information may be provided in zones of particular 
importance. 

The Boundary Element Method can be applied to any situation 
where the governing differential equations are linear or are 
assumed to be incrementally linear. The very nature of the 
formulation makes it amenable to problems of moving boundaries, 
and its application to D'Arcy and Navier's equations is well 
established. 

This work adopts the so-called 'direct' method of analysis.[1], 
since it appears more versatile than other formulations and 
has the distinct added advantage of producing the physical 
variables as solution parameters. The numerical procedure 
is based upon a weighted residual technique, and the weighting 
functions are derived from the unit solution Green functions. 

3.1 Species Diffusion 

Consider the problem defined previously by equations (1) to 
(A). In this work, because we have assumed the diffusion 
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parameters to be dependent only upon the process data, 
equation (1) reduces to the following D'Arcy equation for 
isotropic materials: 

De (0) = ° i=1'2 (12) 

i 
Utilizing equation (12) and the boundary conditions supplied 
by (2), (3) and (4), the following weighted residual state­
ment may be written: 

-q)c* dr (13) Deli^J c* d" 
a x 

where q = D — 
^ e 9n 

9c>,{ 

e 9n 

= (c -c )q* dr + 

F l r 2 

If the left hand side of equation (13) is integrated twice 
by parts, we obtain the inverse formulation, viz: 

I De (.f""^~3 c dfi = J cq* dr + J cq* dr - j qc* dr -j qc* dr 

n 6 X i r r r2 r> r2 

(14) 

We now require to find a solution satisfying the second order 

, f92c,,f>\ 
D'Arcy equation 

i 
If it is assumed that a concentrated change is acting at a 
point 'i1, then we may write this governing equation as: 

D f|2§*)+«. =0 (15) 
e ^9x;r •> I 

where 6. is the Dirac delta function. 
l 

The solution, c*, of equation (15) is known as the Fund­
amental Solution or Green's Function. 
Then, by definition, 

D GrrO dn " - c. (16) 
e^Sx. J x 

i 
Equation (14) may be written more concisely as: 

Kici + j cq* dr = J qc* dr (17) 

r r 
where K, takes a value between 0 and 1 depending on the 
location of the point 'i1. 
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The fundamental solution for a two dimensional isotropic 
medium is given as: 

c* = - —- in r (18) 
2TTD O 

1 !r (*n r ) (19) M 2irD 3n v oJ 

e 

where r = r/vD , and r is the distance from the point of 
application of the unit charge to the point under consider­
ation, the field point,. 

The boundary of the domain of interest may be divided into m 
elements, of which in. belongs to r. and m„ belongs to r„. 

The discretized form of equation (17) is then 

m , m 
X.c. + I cq* dr = I \ qc* dr (20) 

r. r • 
This equation applies for each discrete point on the boundary, 
say node 'i', and the integral terms relate the ith node with 
the jth element. 

Equation (20) may be rewritten as: 

m - m 
K.c. + 2 H.. c. = I G.. q. (21) 

We may define the following relationship: 

H,. = H.. + K.c.A,. (22) 

where A., is the Kronecker delta. 
ij 

Hence, equation (21) may be written in the general form: 
m m 
Z H..c. = Z G..q. (23) 

j-1 lj J j=l ij J 

The whole set of equations may then be expressed in matrix 
form as: 

H C = G Q (24) 

From the applied boundary conditions,m-^ values of c are known, 
and TU2 values of q are also known, so we have a set of m 
equations with m unknowns. Equation (24) is then re-ordered 
to place all of the unknowns into a vector X, hence 
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A X = F (25) 

thereby all of the values of concentration and normal fluxes 
on the boundary of the domain may be established. 

3.2 Elastic Displacement 

Following the same approach used for the linear diffusion of 
the oxidising species, we may write a similar weighted 
residual statement which incorporates the governing equation 
(8) and the boundary conditions (9), (10) and (11). 

jQrk dQ = \ <vuk)tSdr + J <vEk)uHdr (26) 

0 . J rl r2 
where u* and t* are the displacements and surface force in­
tensities corresponding to the weighting field given below: 

tj* = n o*k j.k = 1.2 (27) 

Assuming linear material behaviour, the strains at any point 
of the domain of interest may be written in terms of the strain 
field components, viz: 

i r 9 u i 3u-n 
e.. = 4 1 ^ + n J i,j = 1,2 (28) 

J J i 

This relationship may be assumed to apply for both the approx­
imating and the weighting fields. 

Integrating the left-hand side of equation (26) twice, by 
parts, and utilizing the assumptions of equation (28), we have 

\&\dQ = \ Vktdr + J v ^ d r 

a 3 i"i r2 

" \ V2 dr " { V£ dr (29) 

We now require the fundamental solution satisfying the 
3o*k equation „ ̂  = 0 . If it is assumed that a unit load is 
9x. 
J 

acting at a point 'i', in one of the x. directions, we may 
write this governing equation as 

3o>y. 
3 ^ - 6j = 0 (30) 
J 
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where 6^ is the Dirac delta function and represents the unit 
load at 'i1 in the 'V direction. This type of solution will 
produce the following equation for each direction '£' 

KA + \ V k d r + J V£d r =J" V{dr+J tku*dr 
Fl r2 rl r2 (31) 

Equation (31) may be written more concisely as: 

KA+1 vsdr = I vsdr 
(32) 

where K, takes a value between 0 and 1, depending on the 
location of the point 'i'. 

The fundamental solution for a two-dimensional isotropic 
solid is given as: 

U£k 8nG(l-v) 

t* = 1 N 
£k 4ir(l-v)r 

3r 3r 
3x„ 9x, (3-4v)X,n r 

i «»-^,+ 2 ̂  ^ 
c, 0 \ ,3r 9r . (l-2v) {g^- nk - ̂ - n^ 

(33) 

(34) 

where u§k and tSi, represent the displacements and surface force 
intensities in the 'k' direction due to an applied unit force 
in the direction '£', A ^ is the Kronecker delta, and r is the 
distance from the point of application of the unit load to the 
point under consideration, the field point. 

In matrix form u* and t* are 2x2 matrices with elements u$k 
and t*k. 

The boundary displacements and tractions are expressed as 
vectors, viz: 

u = t = 

Equation (32) may also be expressed in matrix form as: 

u t* dr = t u* 
J ~ ffc J % % 

K.u. + u* dr (35) 
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The boundary of the domain of interest may be divided into m 
elements, of which mi belong to r^ and m2 belong to Y-i> 
Y\ + ?2 = T. The discretized form of equation (35) is then: 

m (• m /• 

$i>4i + E » £* dF = l J J{* dr (36) 

3 J 
This equation applies for each discrete point on the boundary, 
say node 'i *, and the integral terms relate the ith node 
with the jth element. The integral terms in equation (36) 
may be denoted by H u. and G, . t., where H,. and G , are 
2x2 matrices. ^1J J ^1J J ^1J ^1J 

Then equation (36) may be re-written in the form 

m m 
K.u. = I H, . u = I G.. t. (37) 
^ 1 j=i Ĵ J O j=i tf-l <J 

We may define the following relationship: 

H.. = H,. + K.u. h,. (38) 
% <\, i\, % 

where A.. is the Kronecker delta matrix, K. is a coefficient 
matrix depending upon the boundary geometry. 

Hence, equation (37) may be expressed in the general form: 
m m 
Z H,.u. = I G..t. (39) 

j=1 ^jiJ-vJ j=1 jvAJKJ 

The whole set of equations can then be put into matrix form as: 

H U = G T (40) 

From the applied boundary conditions, 2mj values of u are 
known and 2mo values of t are also known, so we have a set of 
2m equations with 2m unknowns. 

Equation (40) may then be re-ordered to place all of the 
unknowns into a vector X, hence 

A X = F (41) 

thereby all of the values of displacement and surface force 
intensities on the boundary of the domain can be established. 
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4. ERROR ANALYSIS 

The boundary integral equations (17) and (32) are themselves 
precise statements of the physical situation, and the prin­
cipal errors which arise in the numerical computations are 
entirely related to the introduction of approximations in the 
domain geometry and the computational procedures. This 
section describes the three primary error-inducing mechanisms 
which contribute to inaccuracies in boundary element formul­
ations, and proposes methods by which the errors may be con­
trolled and prescribed accuracies achieved. 

4.1 Discretization of the Space Domain 

The domain geometry may be approximated as closely as the 
analyst deems necessary by the use of a parametric repres­
entation on the boundary. High solution accuracy and 
boundary definition may be achieved by using a mesh of linear 
elements, suitably refined in the vicinity of the bird's beak, 
or alternatively by the introduction of fewer elements with 
higher order shape functions. 

From a practical standpoint, the extra accuracy obtained with 
the higher order elements has to be balanced against the 
inevitable increase in computational expense, and the most 
cost-effective discretization scheme adopted. 

4.2 Discretization of the Time Domain 

The standard approach to the numerical solution of a differ­
ential equation is to approximate the function curve by a 
sequence of line segments. The simplest and best-known of 
these techniques is a one-step explicit scheme, known as 
Euler's Method, whereby the value of the function at the end 
of the interval is calculated from the gradient of the function 
at the start of the interval. In the oxidation context, this 
approach involves the use of the interface fluxes at time t to 
predict the displacement of the oxide domain, and hence the 
new position at time t+6t. 

Although this approach is conceptually very easy, it has a 
relatively high truncation error when compared with a Taylor 
series solution, and is often unstable in practice. These 
limitations are reflected in the size of the timesteps 
employed, which may need to be relatively small to achieve 
desired accuracies. 

We now consider another of the broad class of Runge-Kutta 
Methods, a two-step explicit scheme, often referred to as the 
Improved Euler Method or Heun's Method, in which predictions 
are made on the basis of the average of the function gradients 
at the start and end of the timestep. 
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Let us re-write equation (6), describing silicon consuming 
velocity VI, in the following form: 

du. 
1 

dt 
kc(t) 
Nl 

i=l,2 (42) 

where ui is the displacement of the interface into the 
silicon substrate in each of the coordinate directions, n. 
is the unit outward normal vector from the oxide domain at 
the silicon/oxide interface, ps is the density of silicon 
and p the density of silicon dioxide. 

Equation (42) may be integrated numerically with respect to 
time to obtain an equation describing boundary displacement, 
viz:-

u. (t+6t) u£(t) + 
•t+6t 

t 

_o kc(t) 
D Nl n. dt 

l 

(43) 

leading to: 

6t,d k c u.(t+6t) = u.(t) + |H- N 1 n.} + 
St rd k c 
2 Nl l 

t+6t 

(44) 

Similarly, the Dirichlet boundary condition for elastic dis­
placement described by equation (9) may be written in the 
following form: 

u.^tj^u.^+fi^p^n.} 

. fit ,-(d-l)k c 
+ r * NI M t+6t 

(45) 

The solving of equations (44) and (45) is an iterative pro­
cedure, since the evaluations of the functions at time t+6t 
must be made on the temporary domain determined by provis­
ional displacements calculated at time t. 

Although Heun's Method effectively doubles the time of comput­
ation, it produces results which are at least an order of 
magnitude more accurate than those obtained by the basic Euler 
Method. This enables longer time steps to be used and sig­
nificantly reduces the overall computer simulation time. 

4.3 Efficient Quadrature of the Matrix Coefficients 

Figure 3(i) shows a pad oxide domain fi, in the presence of a 
nitride mask, and Figure 3(ii) displays the same region of 
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interest at some intermediate or final stage of oxidation. 

-o——o——-o—-o—o——o——b——o——o——o——o——o 

(i) Initial Domain 

(ii) Secondary Domain 

FIGURE 3 

Now it appears that a major limitation of the finite element 
formulation of the oxidation process is the necessary regen­
eration of the discretization mesh at each timestep, which 
has previously proved costly in CPU time. 

An immediate advantage of the Boundary Element Method in 
this situation is that any mesh refreshment is confined to the 
boundary of the domain, leading naturally to a more efficient 
solution procedure. 

However, a perception of Figure 3(ii) will reveal that, for 
the linear problem at least, if the 'left and right hand' 
no-flow boundaries can be represented each by a single linear 
element, then the discretization of the domain boundary 
effectively reduces to a set of elements on the 'top and 
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bottom' boundaries of the dioxide layer. This ploy enables 
the modeller to allow the nodal points merely to adopt their 
displaced coordinate values at each subsequent timestep, 
thereby maintaining the initial number of nodes throughout, 
but with no appreciable loss in definition of the domain 
geometry. 

This tactic introduces a relatively large element into the 
proceedings which leads to potentially disastrous consequences 
so far as the accurate integration of the matrix coefficients 
is concerned, and it is essential that preventative measures 
are taken to preserve the integrity of the quadrature. The 
following text outlines the precautions taken in this direction. 

It may be observed that the fundamental solutions for both the 
D'Arcy equation governing steady state diffusion, and Navier's 
equation governing elastic displacement, are functions of 
£n r and l/r2, where r is the distance between the so-called 
source and observation points. It is well known that in r 
becomes weakly singular and l/r2 becomes strongly singular 
as r̂ O.. This situation pertains when the source points and 
integration regions are close together, and then the matrix 
coefficient integrand varies rapidly. 

When quadrature is carried out by the Gauss-Legendre method, 
it is therefore crucial that the portion of the integration 
region nearest to the source point is allocated a large number 
of sampling points, so that desired levels of precision may 
be achieved. Conversely, when the source point is further 
away from parts of the observation region, the integrand is 
well-behaved, and far fewer Gauss points are required to 
maintain accuracy. 

For the efficient implementation of the Boundary Element 
Method, it is therefore very important that the order of the 
chosen Gauss Rule is consistent with the prescribed accuracy 
of integration which, in turn, is dependent upon the relative 
value of r compared with the dimensions of the region of 
integration. 

When the source point is very close to the observation region, 
or the region of integration is large, it may be that the 
maximum order of Gauss Rule contained within the program is too 
low to ensure that the desired accuracies are maintained. 
In this case, it becomes necessary to sub-divide the region 
of integration into a number of sub-regions, and each of these 
is then allocated its own coordinate axes, is integrated 
separately, and the results aggregated to give the overall 
value for the required matrix coefficient. 

In this work, the diagonal entries of the G matrices are 
calculated analytically ,. and those of the H matrices by the 
application of rigid body motion. The off-diagonal matrix 
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coefficients are computed by Gaussian Quadrature, using 2, 4, 
6 or 10 sampling points according to a pre-defined criterion. 

The procedure devised for the numerical integration of the non-
singular integrals is based on the work of Lachat and Wilson 
[3 ], and Liu Jun et al. [4 ], which minimises the comput­
ational effort by specifying an upper bound for the integration 
error. This requires that the order of the Gauss rule is 
selected on the basis of the ratio of the distance between the 
nearest point on the loaded element and the source point, to 
the length of the field element, and also on the strength of 
the approaching singularity. 

When necessary, the field element is sub-divided unequally 
according to an inverse calculation of the optimum length of 
sub-element consistent with the previous criterion and 
incorporating ten integration points. If the final sub-element 
is shorter than the optimum length for efficiency, a lower 
number of sampling points is automatically selected. 

5. SOLUTION FLOW CHART FOR HEUN'S METHOD 

Step 1 : Select an initial pad oxide thickness and a 
suitable timestep. 
Set time = 0 

Generate meshes on the boundaries of fi. and fi„. 

Compute concentration values on the boundary of 
J21 according to equations (1) to (4). 

Store nodal coordinate values. 

Calculate the absolute growing velocity and 
resolve into its component parts according to 
equations (5) to (7). 

Store silicon consuming velocity values. 

Compute displacement values on the boundaries of 
ni and n„ according to equations (8) to (11). 

Store displacement values on r„ to r,.. 

Deform r̂  according to displacements calculated 
from VI(t) in step 5, and ^ to T$ according to 
displacements computed in step 7. 

Repeat steps 3, 5 and 7. 

Calculate the corrected nodal displacements for the 
current timestep by averaging the values stored 
in steps 6 and 8 with those obtained in step 10. 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
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Step 12: Deform meshes on the boundaries of fi1 and fi„ 
accordingly. 

Step 13: Repeat step 3. 

Step 14: Update elapsed time. 

Step 15: Return to step 4 unless simulation time is complete. 

6. CONTROL PARAMETERS 

The Deal and Grove model [2] for one-dimensional oxidation 
gives oxide thickness x as a function of time, t: 

A 
X = 7T 

o 2 

11 

A2/4B> 
fi + t+T_V . 1 
V . 1 + A2-/4B> 2 (46) 

Two limiting forms of equation (46) have been identified: 

(i) xn B f (t+r) (47) 
o A 

when t « A2/4B 

(ii) X Q s (BtV (48) 

when t » A2/4B, t » T 

The coefficient B is referred to as the parabolic rate 
constant, and B/A as the linear rate constant. The temper­
ature dependence of both these constants shows a variation 
of the form: 

C exp(-E/RT) (49) 

where C is a pre-exponential constant and E is an activation 
energy. 

The following relationships have been established for the 
thermal oxidation process: 

-q E 
D Q = D„ exp [-^ Gnr) <50> 
k = k exp -̂7j7=—J (51) 

A = 2 D (1/k + 1/h) (52) 
e 

B = 2 D cE/Nl (53) 
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x = (x.z + Ax.)/B (54) 

where x. is the oxide thickness prior to any controlled 
oxidation and not necessarily the pad oxide thickness. 

For the purposes of this paper, all simulations have been 
carried out on <111> surface orientated silicon, and the data 
values used are listed in Table 1 et seq., and Table 2. 

7. RESULTS 

The numerical model described in the foregoing text was 
used to simulate the problem of semi-recessed oxidation in 
a wet ambient at a process temperature of 920°C. The pad 
oxide thickness was assumed to be 25nm, with a nitride mask 
thickness of 100 nm. 

The space discretization comprised 82 linear elements on 
the boundary of the oxide domain and 42 linear elements on the 
boundary of the nitride domain. The simulations were carried 
out for 200 minutes using 10 minute timesteps. 

Table 3 gives a comparison of the computational 1-D errors 
incurred using Euler's Method and Heun's Method respectively 
and Figure 4 shows the final simulation geometry after 200 
minutes. 
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c (m ) 

Nl (m~3) 

D (m2s_1) 
o 

k (ins ) 
o 

EA (eV) 

Ek (eV) 

°2 

5.20 x 1022 

2.25 x 1028 

4.50 x 10"8 

731.90 

1.23 

2.00 

H20 

3.00 x 1025 

4.50 x 1028 

3.54 x 10"9 

72.10 

1.17 

2.05 

TABLE 1 - Diffusion Parameters 

-19 q = 1.6 x 10 Coulombs 

R = 1.38 x 10"23 JK-1 

h = 2.75 ms 

SiO„ Si N. 
2 3 4 

E (Nm~2) 6.60 x 1010 3.89 x 1011 

0.17 0.30 

TABLE 2 - Elasticity Parameters 

The above data values are assumed constant 
throughout the oxidation process. 
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Elapsed Deal & Euler's Method Heun's Method 
time Grove 1-D Absolute Relative Absolute Relative 
(mins) Model (nm) Error (nm) Error (%) Error (nm) Error (%) 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

150 

160 

170 

180 

190 

200 

77.322 

122.494 

162.831 

199.616 

233.650 

265.471 

295.462 

323.905 

351.019 

376.974 

401.907 

425.930 

449.136 

471.603 

493.397 

514.576 

535.189 

555.279 

574.883 

594.036 

-4.858 

-7.220 

-8.572 

-9.415 

-9.971 

-10.348 

-10.610 

-10.793 

-10.920 

-11.006 

-11.062 

-11.096 

-11.113 

-11.117 

-11.111 

-11.096 

-11.076 

-11.051 

-11.021 

-10.988 

-6.283 

-5.894 

-5.264 

-4.717 

-4.267 

-3.898 

-3.591 

-3.332 

-3.111 

-2.920 

-2.752 

-2.605 

-2.474 

-2.357 

-2.252 

-2.156 

-2.070 

-1.990 

-1.917 

-1.850 

-0.036 

-0.046 

-0.049 

-0.051 

-0.052 

-0.051 

-0.047 

-0.039 

-0.025 

-0.001 

0.032 

0.077 

0.135 

0.206 

0.292 

0.394 

0.511 

0.644 

0.793 

0.959 

-0.047 

-0.037 

-0.030 

-0.025 

-0.022 

-0.019 

-0.016 

-0.012 

-0.007 

0.000 

0.008 

0.018 

0.030 

0.044 

0.059 

0.076 

0.095 

0.116 

0.138 

0.161 

TABLE 3 - Comparison of Time-stepping Methods 



432 

Figure A - Geometry after 200 minutes 


