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1. ABSTRACT 

One-dimensional and two-dimensional algorithms 
for the transient simulation of semiconductor 
devices are presented which incorporate a 
divergenceless total current. The paper includes 
results from a one-dimensional simulation of a p n 
junction and speculates on the potential of the 
two-d imens ional algor ithm. 

2. INTRODUCTION 

Over the past two decades a considerable 
research effort has gone into the numerical 
simulation of semiconductor devices. As a result 
quite sophisticated steady-state and transient 
two-dimensional packages are now available some of 
which are designed for particular device 
structures e.g. FET or bipolar and some are 
flexible enough to be able to cope with arbitrary 
geometry. Significant development work on 
improving two-dimensional simulators is still 
continuing with most of the effort concentrated on 
improvimg the meshing facilities and overall 
efficiency of the numerical schemes mainly with 
the overall objective of carrying techniques over 
to three-dimensional simulators. 
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The starting point of all new simulators, 
however, is an algorithm for the solution of the 
semiconductor transport equations. This paper 
presents an improved one-dimensional algorithm for 
the solution of the traditional semiconductor 
transport equations, namely Poisson's equation and 
the current continuity equations, and also 
speculates on a method which carries over the 
algorithm for a two-dimensional transient 
simulator. 

3. ONE-DIMENSIONAL ALGORITHM 

The one-dimensional equations governing the 
device physics are: 

Poisson's : Is* = -S.(P-" + ND-NA) (i) 

Current continuity: 
at 

aP 

-R + I a£n 
q dx 

l aj 
-R - - ̂ -P q dx 

(2) 

Total current Jt - Jn + Jp + e || (3) 

Previous transient schemes, notably [1], typically 
use the current continuity equations to determine 
n(x,t) and p(x,t) which are used to estimate 
n(x,t+At) and p(x,t+At). These updated values of 
n and p are in turn substituted into Poisson's 
equation which is then solved to yield ^(x,t+At) 
or E(x,t+At). An explicit scheme or one of 
several implicit schemes [2] may be used to 
determine these updated values for the next 
iteration in time. 

Equations 1, 2 and 3 are all coupled by 

aJt 
dx 

(4) 

(i.e. div JfO generally) which is a condition not 
usually enforced in transient schemes but has been 
previously used in steady state schemes [3,4], In 
one-dimension the enforcement of div Jf^O simply 
yields a constant total current across the device, 
i.e. Jt(x,t)=Jt(t) for all x. Jt(t) is the 
terminal current which may be determined by 
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integrating eqn. 3 along the length, £, of the 
device to yield 

Jt.£ = Jndx + Jpdx + e^£ (5) 

where V is the applied terminal voltage and is a 
boundary condition. By substituting Jt back into 
eqn. 3 there is an elegant method of updating the 
electric field, for all x, from the displacement 
current term: 

e |f(x,t) = Jt(t) ~ Jn(x,t) - Jp(x,t) (6) 

Thus if n(x,t), p(x,t) and E(x,t) are all known at 
the start of the time frame then Jp(x,t) and 
Jn(x,t) can be determined and an iterative scheme 
can be based on equations 2, 5 and 6. Poisson's 
equation is implicit in equations 2 and 4 and is 
thus not required in the iterative scheme, 
however, it is required for an initialisation at 
t=0. 

This algorithm has been implemented as an 
explicit finite difference scheme using a 2nd 
order Adams-Bashforth's method for the time 
derivatives. Numerical stability was achieved 
with a Scharfetter-Gummel discretisationtxl of the 
hole and electron currents. This form of 
discretisation assures a constant Jn and Jp 
between successive mesh points so that the average 
electron and hole currents, required in eqn. 5 can 
be evaluated accurately by simply summing 
successive current values. In addition the 
electric field is assumed to be constant between 
mesh points so that the displacement term in eqn. 
6 remains an exact equation. 

Numerical stability of the explicit scheme 
also required the time and spatial steps, At 

D 
and AX, to be restricted by At < —i-E ( A X ) 2 

with At and AX chosen to be the same order of 
magnitude as the differential dielectric 
relaxation time and the Debye length respectively. 
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4. RESULTS OF ONE-DIMENSIONAL SIMULATION 

Some initial results have been obtained from 
the simulation of a pn junction with the doping 
profile shown in Table 1. Ohmic contacts have 
been incorporated by including regions adjacent to 
the terminals in which the doping has been 
increased and the lifetimes and mobilities 
reduced. 

Table 1 
Doping profile of the pn junction 

A»n 

(Nr)-NA)cm-3 

0 - 1 ! 1-10 

1 0 1 6 j 1 0 1 S 

i 

10-19 

- 1 0 I S 

19-20 

_ 1 0 1 6 

Carrier generation and recombination is 
included and is modelled by the Shockley-Read-Hall 
expression with lifetimes rn and Tp •= Ins. 

Figure la shows successive time frames of the 
hole and electron distribution when the terminal 
voltages are ramped in 50psec from equilibrium to 
O.lv forward bias. The distribution of the 
minority carriers shows the familiar exponential 
decay (note the log.scale) the different diffusion 
lengths being associated with the mobilities 
/in=1500 and /ip-500cm

2/V-s. Figure lb shows the 
transient quasi-Fermi levels. The unequal slopes 
in the initial 0n and #p in the neutral regions 
are associated with the different resistivities 
requiring a correspondingly different E field to 
maintain current continuity. In addition the 
total steady state current of .84 10-*Acm~2 

corresponds to the recombination current after 
Sze[5]. 

Figure 2 shows the same device switched by a 
ramped terminal voltage from the O.lv forward bias 
to O.lv reverse bias in 50psecs. The initial 
changes in the minority carrier distribution 
clearly identifies the stored charge phase of the 
transient. The corresponding reverse bias current 
of .23 10~4Acm-2 is associated with the generation 
of carriers in the depletion region [5]. 
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figure 1(a). Log n and Log p at 
t»0, .1, .3, .5, .7 
and > 1.0 ns 

, 2.5 5.8 7.5 18.8 12.5 15,9 17.5 28.8 

Figure 1(b) Imrefs at 
t=0, .1, .3, .5, .7 
and > 1.0 ns 
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Figure 2(a). Log n and Log p at 
t=0, .1, .3, 1.0 
and > 3.0 ns 

MICROHS 
2 ,5 5 .8 7 .5 19.9 12 .5 15 .9 17 .5 2 9 . 8 

Figure 2 ( b ) . Imrefs a t 
t - . 3 . 1.0 
and > 3.0 ns 
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5. TWO-DIMENSIONAL ALGORITHM 

5.1 An extension from the one-dimensional 
algorithm 

The following scheme is an attmept to extend 
the one-dimensional algorithm described previously 
to two-dimensions whilst preserving its essential 
feature. The principle motivation is to retain 
the use of a "total current" distribution which 
obviates the necessity of solving Poisson's 
equation except for initialisation. 

Thus, in more than one dimension eqn. 2 and 
eqn. 4 become respectively, 

|£ - -R • i div Jn | ^^ 

|f = -R - J div Jp 

div Jt = 0 (8) 

In one-dimension, eqn. 8 implies that Jt has a 
very simple distribution and is simply constant 
throughout the device. This is an extremely 
powerful property in one-dimension and leads to a 
very elegant algorithm. In two-dimensions, the 
distribution Jt is inevitably more complex, and 
computationally more expensive to obtain. 

If the device is oriented to lie in the x-y 
plane then a stream function 6 can be introduced 
for Jt such that 

Jt - Curl e (9) 

This guarantees that eqn. 8 is satisfied for any 
field e. 6 is a vector field, but has only one 
non-zero component, in the z direction, but is not 
uniquely determined by eqn. 9. In addition it 
shall be assumued that 

div 6 - 0 (10) 

which simply implies that 6 is independent of the 
z coordinate. Further information is available on 
6 if the curl of eqn. 3 is taken. 
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Curl Jt - Curl (Jn+Jp) + e|^(Curl E) (11) 

Here e is assumed to be piecewise constant and the 
order of differentiation of E has been reversed 
since x, y and t are independent variables. 

The last term on the R.H.S. of eqn. 11 
vanishes since E •= - grad + and Curl(grad f) is 
identically zero for any f. The L.H.S. of eqn. 11 
may be written as -AS where A is the Laplacian 
operator, by invoking the standard identity : 
Curl(Curl 9)-»grad(div e)-A6, and using eqn. 9 and 
10. Thus 6 is obtained as the solution of 

AS ~ - Curl (Jn + Jp) (12) 

subject to suitable boundary conditions. The 
importance of eqn. 12 is that it gives a solution 
for © and hence Jfc, without prior knowledge of 
3E/6t. Terminal boundary conditions are required, 
however, that are equivalent to eqn. 5, if 
problems are to be handled where contact voltages 
are specified functions of time. 

5.2 Boundary Conditions 

It will be assumed that the boundary of the 
device comprises of alternating insulated boundary 
segments Bi and ohmic contacts C^. A 
representative three contact device is shown in 
Figure 3. 

C2 B2 C, 

Co 

Figure 3 
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On an insulating boundary, it is assumed that 
the normal component of Jt is r.emo. This is true 
if the leakage of displacement current e3E/3t is 
negligible. From eqn. 9 this implies that the 
tangential component of grad 9 is zero, or that e 
is constant along Bi- This is a Dirichlet 
boundary condition on 9. 

On a contact, where conductivity is high, Jt 
is assumed to be normal to the boundary, i.e. the 
tangential component is zero, implying that the 
normal component of grad e is zero. This is a 
Neumann boundary condition on 0. 

5.3 Decomposition of the stream-function 
Because the Dirichlet boundary conditions for 

G on Bi are not directly known from the contact 
biases, it is necessary to derive them via a 
decomposition of the stream function as follows. 
(Much of the inspiration for this came from the 
work of M.S. Mock [6] applying stream functions to 
the steady state problem). 

n-1 
Let 9 = 60 + E Fj0j (13) 

j = l 
where n is the number of contacts. 
60 is the solution of 

A90 = - Curl (Jn + Jp) 
with 
0O = 0 on Bi and (grad 90).n = 0 on Cj.J 

(14) 

(n is the unit vector outward normal to the 
boundary). Equation 14 has to be solved at each 
time-step. 

6j is a time-independent stream function and 
is dependent only on the device geometry:-

A9-* = 0 with e-i = 0 on Bi, i^j; 
eJ = 1 

and (grad 9j).n 
9j = 1 ^ on B-j 
[grad e-O.n = 0 on Ci 

(15) 

Equation 15 need only be solved once at the 
beginning of the transient solution for j=l to 
n-1. One insulating and one contact boundary, B„ 
and C0 respectively, are chosen arbitarily as 
references. 
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Finally, the coefficients Fj are found in 
terms of the aplied bias potentials as follows:-

Taking the line integral of eqn. 3 between a 
pair of contacts, and j, using eqn. 9 gives 

j> Curie.dr = j). (Jn + Jp).dr + e-^± (16) 

where Vij is the voltage at the itn contact minus 
the voltage at the j*-" contact. The L.H.S. of 
egn. 16 becomes, using eqn. 13 

L.H.S.= «f:i(Curl 0o).dr + E Fk tfjcurl 6k) .dr (17) J i jc=i J l 

Thus by choosing (n-1) pairs of contacts, i and j, 
eqn. 16 leads to (n-1) linear equations in the 
(n-1) unknowns Fjc- Furthermore the coefficient 

matrix consisting of terms A (Curl 0k).dr need be 

calculated once only, at the initialisation stage, 
when the 0k have been found. Equation 16 is the 
generalisation of eqn. 5 to two-dimensional 
problems. It is noted that 0 given by eqns. 13, 
14 and 15 satisfies the boundary conditions that 9 
is constant on B^ and (grad 0) .n is zero on 
contacts, whilst being consistent with the rates 
of change of contact voltages. It is suggested 
that the line integrals be performed along the 
boundaries B±, i=l to n-1, between the contact 
edges, where the normal component of (Jn + Jp) has 
been assumed to be zero as a boundary condition. 
Also in eqn 17: 

i+1 i+1 
«J>. (Curl 0k).dr = <j> (grad 0k) .n dr (18) 

Since grad 0k is normal to B^ the integration is 
simplified somewhat. 

5.4 Summary of the two-dimensional algorithm 

During the initialisation the 0k are found 
from eqn. 15 and their line integrals calculated. 
At each time step 0O is found from eqn. 14 and its 
line integrals are calculatd. Then simultaneous 
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eqns. 16 are solved for the Ffc using eqn. 17 for 
the L.H.S. This enables the distribution of Jfc to 
be found via eqn. 13 and 9, whence 6E/3t is known 
everywhere from eqn. 3. Now E is updated from a 
time step based on 6E/dt and n and p are updated 
from time steps based on dn/dt and dp/dt obtained 
from eqn. 7. Finally, new currents Jn and Jp are 
found from n, p and E for the next time step. 

6. DISCUSSION 

The work entailed in finding the distribution 
of the vector field Jt is considerably greater in 
two-dimensions than in one-dimension, where Jt is 
scalar and constant. After initialisation, 
however, solving eqn. 14 is no more onerous than 
solving Poisson's equation. It is felt that the 
proposed scheme is worth investigating therefore, 
because it forces the total current Jt given by 
eqn. 3 to be solenoidal, a condition imposed by 
the physical nature of the problem. Also it gives 
a direct coupling between electric field and the 
current distributions on a point by point basis, 
instead of via weighted area integrals of charge 
density (implied by Coulomb's Law) as in the case 
of Poisson's equation. The method is seen, then, 
to be fundamentally different and offers an 
interesting and useful alternative to other 
schemes which employ Poisson's equation. 
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