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ABSTRACT 

This paper describes a computer modelling system for use 
in the study of these GaAs/AlGaAs heterostructure devices. 
The model is based on the solution of the basic device 
equations, which are solved using the finite - difference 
technique, and results are given for both the one dimensional 
and two dimensional cases. These results show that suitable 
grading of the emmiter base junction is important in the 
optimum design of the device. 

INTRODUCTION. 

With the advent of recent epitaxial techniques (MBE and 
MOCVD), it has become possible to introduce an extra degree of 
freedom into the design of semiconductor devices. It is now 
possible to engineer the band-gap of the device, allowing a 
flexibility hitherto unattainable in conventional device 
design. By careful control of band-gap and doping, it is 
possible to control the injection or confinement of electrons 
and holes. It is this which has paved the way for many of the 
new GaAs devices currently being developed. 

The essence of heterojunction bipolar transistors is the 
confinement of holes to the base region. Changing the 
composition at the emitter-base junction, from AlGaAs in the 
emitter, to GaAs in the base, sets up an adverse "quasi-
electric" potential barrier that prevents hole injection into 
the emitter. As holes can no longer be injected from the 
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base, it is not necessary to have an emitter that is more 
heavily doped than the base region, in order to obtain a 
reasonable injection ratio (7). Two of the main time delays in 
the bipolar transistor are the junction charging times, these 
are RC time constants, so lowering the resistance will improve 
the maximum frequency of oscillation f . Increased base 
doping, considerably reduces both the base^resistance, and the 
emitter depletion capacitance. Sufficient reduction of these 
two elements will increase the frequency range into the 
millimetre wave area, and theoretical calculations have 
predicted cut-off frequencies f of over 100 GHz [1]. 

Recently reported results have shown HBT's to have 
enormous promise in the fields of high speed digital I.C.'s 
[2], MMIC's [3] and also in opto-electronics as a 
phototransistor [4]. Particularly attractive is the 
development of ECL circuits which have already shown 
themselves to be the fastest silicon digital technology with 
ft's of nearly 10 GHz. 

In this paper, a simulation of the HBT, using the 
finite-difference technique, is discussed. A one-dimensional 
simulation has been used to examine the effects of base-
emitter compositional grading, on the current transport 
mechanisms at this junction. Conclusions drawn from this 
study have been implemented in a two-dimensional model of the 
HBT in order to determine the optimum emitter mole-fraction 
and grading profile. 

PROBLEM FORMULATION. 

The basic "phenomenological" device equations for 
semiconductors used in device simulation work are [5] :-

V.(fE) - q ( r - n + p ) (1) 

where : T - N_ - NA D A 

£ - i 'j . - - <» 
dp 1 -
•ft - - V.J - U (3) 
dt q p * ' 

Equation (1) is Poisson's equation relating electric 
field to enclosed charge. Equations (2) and (3) are the 
current continuity equations for electrons and, holes, and they 
are a statement of the conservation of charge. These 
equations are general, and form a set of coupled partial 
differential equations. 

In a device of non-uniform composition the basic device 
equations must be modified in order to take account the non-
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uniformity of the material parameters. The assumption that 
the permittivity is uniform can now no longer be taken to 
apply. In silicon device simulations where band-gap narrowing 
is considered this variation is ignored, although it can be 
very important. In the present non-uniform device Poisson's 
equation is modified to : -

Ve.E + eV.E - q ( r - n + p ) (*) 

This simplifies when the device is of uniform composition 
( Ve - 0) to the familiar form of Poisson's equation. 

The classical Shockley equations for current density [6] 
must be extended to include extra terms. These take into 
account the internal "quasi-electric" fields due to the 
positional dependence of the band-gap, and "quasi-diffusion" 
due to the positional dependence of the density of states [7]. 
For a semiconductor at a constant temperature the particle 
current densities are given by [6] : 

J n " - n"n V Efn <5) 

3P " _ PV Efp <6) 

rcferencp IPVPI 

•r 

< 

-~ <•< 

Eg 

nv 

Figure 1. 

Generalised Energy-band diagram of a non-uniform semiconductor. 

from figure .1 the electron and hole Fermi-energies are given 
by : 

n 

"fn 
qV- - ( X ~ Xr ) + kT exp N 

'fp 
qtf - < X - X r > + E + kT exp jj _P_ 

r 

V 

(7) 

(8) 
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where : xr is a reference energy level, i> is the electrostatic 
potential, x is the electron affinity, E is the material 
bandgap, n and p are the carrier concentrations and N and N 
are the conduction and valence band density of states. c v 

Substituting equations (7) and (8) into (5) and (6) 
yields the following equations :-

— — kT kT 
Jn " V ^ " 7* + n V n ~ N VNc> <9) 

— — kT ° kT 
Jp " Mp(qE -VX- VEg - ̂ -Vp + |i7Nv) (10) 

Equations (9) and (10) again simplify to the familiar 
equation for current densities when the material is 
homogeneous. Equations (2) - (10) completely describe the 
system, subject to the appropriate boundary conditions. In 
order to arrive at these equations the following assumptions 
have been made :-

(i) All impurity atoms are completely ionised 

(ii) Position dependent effective mass is still a valid 
concept 

(iii) Anderson electron affinity rule applies 

(iv) No interfacial charge exists at the heterojunction due 
to lattice mismatch 

(v) Doping is sufficiently low to avoid degeneracy 

(vi) Boltzmann statistics are taken to apply 

(vii) Band-gap narrowing does not occur 

(viii) Minority carrier mobilities are the same as for 
majority carriers 

Points (ii) and (iii) assume that grading is 
"sufficiently gradual" [7] this is implicit in equations (5) 
and (6). Lundstrom and Schulke [8] have added an extra term 
into these equations to model the influence of Fermi-Dirac 
statistics on the Einstein relationship, this term is zero in 
the limit of condition (v). 

PHYSICAL PARAMETERS 

Those parameters (defined in fig.l) relating to the band 
structure, are based of the results of Dingle [8], who derived 
the following relationship: 
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AE - 0.85 AE eV 
c g 

AE - 0.15 AE eV 
v g 

(ID 

(12) 

Known as Dingles rule, this is a subject of much 
controversy, with more recent measurements pointing towards 
50% of the discontinuity occurring in each band [9], however 
in this work (11) and (12) have been used. The variation of 
the band-gap E 

g 
at 300K is taken to be [10] : 

1.422 + 1.25x eV (13) Eg(x) -

where x < 0.4 since only mole-fractions less than the direct-
indirect cross over point (approximately x - 0.45) are of 
interest. The compositional dependence of the density of 
states in the conduction and valence bands are [10] : 

N (x) - (0.067 + 0.083)3/2 * 2.5xl019 cm-3 

N (x) - (0.480 + 0.310)3/2 * 2.5xl019 cm-3 

(14) 

(15) 

also the variation of the electron affinity is given by 

X(x) - 4.07 - 1.06x eV (16) 

The net recombination rate is assumed to be given by a 
simplified Shockley - Hall - Read model in which the traps are 
located at band centre, and both carrier types have the same 
lifetime r-lns. Experimental results have shown this to be a 
reasonable choice. The expression used is : 

2 
np - nL 

U " r(n+p+2ni)
 ( 1 7 ) 

Hole mobility is taken to be independent of the mole-fraction 
of aluminium in the alloy. This is reasonable since holes 
contribute only slightly to the overall performance of the 
device. However, the hole mobility - field dependence is 
taken into account, as well as dependence on temperature and 
absolute doping, resulting in the familiar expression for low 
field mobility : 

low 
p + 
'o 

1 + 
ND + NA 

cm/V.s (18) 

ref 
temperature dependence is incorporated by 

300/i 
Hi (T,N_+N.) 
^lows D A' 

low 2 _. 
cm/V.s (19) 

The values of these parameters are taken from reference ?[ 111 
to be p. - 50cm /V.s, p., - 330cm /V.s, N f - 3.232x10 cm 
and Q - 0 . 4 ^ 5 6 . Moreover, the field dependence is given by : 
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/. (T,E.HD+HA) 

1 + 

low 

^low 
(20) 

v sat 
Vsat *s t*le c a r r i e r saturation velocity, and for holes in 
Gafis, it is 1.5x10 cm/s. A similar relationship exists for 
electron mobility, the dependency on field is described by 
Freeman and Hobsons empirical relationship [12], giving for 
GaAs : 

ULOcnwuiQ cunvi • toPim vifucutct UUCItWIElO CinvC - !(*> CVDCCfcCC 

D»»l*t t tO'/im* 

/ ^ 

//^^r^zz~;z: 

•iiV X- «?• 

Figure 2. 

Velocity field characteristics of GaAs as a 
function of temperature and doping. 

v - v(E,T,NA+NB) -

1 + 
8.5xl06 E3 

300"lowE li, E4 .„ (1 - 5.3x10 4T) o i 1 
^low crit v 2„-l -1 

- cm V s 
4 1 + 

crit 

(21) 

where 

with 

Ecrit " ^103Vcm-1 

8xl0_ 

low 

1 + 
NA+NB' 

10 
17 

0.5 
2..-1 -1 

cm V s (22) 
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In the alloy AlGaAs, the mobility is reduced as the mole-
fraction of aluminium (x), is increased from zero, due to 
alloy scattering. This is included into the model empirically 
by scaling the low - field, room temperature value of mobility 
so that : 

PRT(x) - m(x) PRT(0) (23) 
»>••»• H . 1 

.a(x) is a monotonically decreasing function of the mole-
fraction x. As the relationship between electron mobility and 
mole-fraction is not at all well documented it is hoped that 
this approximation exhibits the correct behaviour, to a first 
order at least. 

FINITE - DIFFERENCE APPROACH 

The device is simulated over a rectangular domain, this 
is ideally suited to the planar device structure presently 
under consideration. Within the simulation domain, the grid 
spacings are perfectly general. Initially a coarse grid is 
generated which depends on doping levels and the positioning 
of geometric features. The mesh is then refined in those 
areas where large gradients of potential or carrier profile 
arise, in order to minimise the error in these areas (see 
figure 8 ) . The solution of the device equations (2) - (4) are 
in terms of the three dependent variables ^,n,p. Potential is 
scaled in units of thermal - volts to reduce repetitive 
calculations, whereas the carrier concentrations remain 
unsealed. 

Poisson's equation is expressed using the usual "five 
point formula" based on the central difference Taylor 
expansion figure 3. 

d(*E) 
dx i,j :i,j 

*l+l.r*l.1 *1.1-*1-1.1 

i-1 
hi + hi-l 

ci+l.1 e1-1.1 
hi + hi-l 

*1+1.1 ^i-1.1 . n,,2. 
h + h ( ) 

ni + ni-l 

(24) 

As seen from figure 3, i and j refer to the node index, e is 
the d i e l e c t r i c permi t t iv i ty , ij> i s the discre t ised 
e l e c t r o s t a t i c po ten t i a l and h i s the node spacing ( 
h. - x. -—x. ) , an analogous expression can be wr i t ten for the 
der iva t ive \ n the y d i rec t ion . If the expressions for the 
der iva t ives (24) are subst i tuted for both d i rec t ions , then an 
equation for ij>. . can be expressed in terms of the four 
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Figure 3 . 

Internal node on device plane, showing separations. 

surrounding nodes, when this is carried out at every inner 
node, a system of linear simultaneous equations are obtained. 

WW - [B] (25) 
here [A] is the coefficient matrix, [V>] is the unknown vector 
and [B] is a known vector containing the right hand side of 
equation (4). The coefficient matrix [A] for boundary value 
problems, is a sparse banded matrix, and so the solution of 
(25) is best arrived at iteratively for a large system of 
equations. The solution of Poisson's equation is obtained by 
using the successive over relaxation scheme (SOR) on the 
Gauss-Siedel method. The method is more efficient than direct 
methods, as the memory requirements are minimal, also round 
off errors are limited to the last iteration. 

The current continuity equations (2) and (3) are second 
order parabolic differential equations in n and p. The 
current density equations are formulated in terms of the 
Scharfetter - Gummel equation. Because of the compositional 
dependence in the HBT, two parameters 6 and 6 are 
introduced, these come directly from equations (9n and (?0) : 

(26) 

(27) 
n 

q/innV(V>+0n)+qDnVn 

where 

V pV(lMp>-qD Vp 

(x-xr) 
n q 

N 

N 
cr 

(28) 



>! 

<x-xr) 

90 

(E -E ) 

q q N vr 
(29) 

X i s defined such tha t 6 -6 - 0.0 when the mole-fract ion x 
— 0 .0 . The modified equations' for the current densi ty a r e now 
used i n the standard Scharfetter - Gummel equation fo r the 
cur ren t densi ty a t the "half node" points, figure 3 . This 
method i s superior to the l inear approximations used in 
previous work, in tha t the potent ia l difference between nodes 
i s no longer a s t a b i l i t y c r i t e r ion , and allows l a rge r space 
s teps (h. and k . ) to be used. Explicit schemes for the 
so lu t ion of equations (2) and (3) in terms of the v a r i a b l e s n 
and p , using a forward difference in time may become unstable , 
and have very s t r i c t convergence c r i t e r i a 

Ax2 

At < %r (30) 

Equation (30) i s defined for a uniform mesh, where D i s the 
di f fusion constant . For s t a b i l i t y this condition i s applied 
to e lec t rons as D > D . Using an implicit scheme based on 
the Crank - Nicholson method, this r e s t r i c t i o n can be 
overcome. The impl ic i t scheme i s essent ia l ly a central 
d i f ference in time, and i s stable for a l l time s t e p s . The 
f i n i t e - difference approximation to (2) and (3) then becomes 

n i , J - n i , J 

A t 

k+1 , . k, . 

A t 

i->
 

2q 

- 1 
" 2q 

V.J k + 1 + V.J ] 

n, . n. . 
i.j i.J 

where 

V.J 

V.J 
k+1 

+ V.J 
'i.j 'i.j 

-U. . (31) 

-Ui.j (32) 

J - J J - J 
Xi+1/2.1 Xi-1/2.1 +

 yi,j+1/2 yi.1-1/2 

i.j hi+hi-l k1+k1-l 
2 2 

(33) 

Equations (31) and (32) again give the solution at a node i,j, 
in terms of the four surrounding nodes. The solution is again 
arrived at by iterating, using the Gauss - Siedel method. 

BOUNDARY CONDITIONS 

The boundary conditions imposed at the device boundaries, 
can be split into two types. Dirichlet boundary conditions 
(fixed) are applied at ohmic contacts, and Neumann boundary 
conditions (derivative) are imposed at all free surfaces. 

At ohmic contacts charge neutrality must exist and 
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thermodynamic equilibrium is imposed, leading to : 

at n ohmics 

(r2+4n2)1/2+r 

at p ohmics 

P ~ 

2 

2 
ni 

P - T 

(rW)1/2^ 

2 
Pi 

n - -± (34) 

the boundary conditions on potential at a contact are given in 
terms of the quasi-Fermi level : 

*ni " V a p Pi 
^p. - VaPPi (35) 

where i is the contact number 

At free surfaces the perpendicular field is set to zero 

IS - °-° (36) 

also the perpendicular current is set to zero 
% £ - % & - 0.0 (37) 
an Sn 

The contact currents are evaluated by integrating the 
perpendicular current on a path around the contact 

I-1 (J +J ).ds (38) 
J P n p' 

SIMULATION RESULTS 

The planar device structure analysed in this paper, is 
considered to be a simplification of the mesa structures that 
are most commonly fabricated. The HBT is a vertical device, 
the dimensions of which are dependent on the crystal growth 
technique being used. 

Junctions grown by MBE can be as abrupt as a single 
mono-layer, ( few A ) and indeed junctions are often grown to 
such limits. For this reason the doping profile modelled in 
the HBT is as shown in figure 4, being very simple when 
compared to those in diffused transistors. The P base 
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Figure 4. 

Device geometry. 

contact region i s produced by implanting into the AlGaAs 
emi t te r layer , and the side walls of the implant a re assumed 
to produce an abrupt PN AlGaAs homojunction. When biasing 
such a s t r u c t u r e , i t might well be expected that the current 
i n j ec t ion across th i s junction wil l dominate the device 
c h a r a c t e r i s t i c s ; however th is is not the case since the GaAlAs 
homojunction has a higher bu i l t - in potent ia l than the pN 
hetero junct ion , and so does not turn on as e a r l y . The 
c o l l e c t o r contact i s along the bottom of the device, i t is 
f e l t t h a t t h i s simplif ication is ju s t i f i ed , s ince the 
co l l e c to r contact doping level is very high and w i l l have 
l i t t l e e f fec t on the contact currents. There are usua l ly two 
base contacts in a device of this type, the whole structure 
being symmetrical around the centre of the emitter 
meta l iza t ion , but by simulating only half of the device , the 
run time and memory requirements wil l be halved, without any 
loss of information. The aluminium mole-fraction p r o f i l e at 
the emit ter-base junction i s extremely important in the design 
of HBT's. For example, the turn-on voltage experienced in the 
t r ans fe r cha rac t e r i s t i c s of the HBT is a t t r i bu t ab l e to the 
difference between the emitter and col lec tor bu i l t - in 
p o t e n t i a l s . The existance of a turn-on voltage i s highly 
undesirable when designing d ig i t a l c i r cu i t s , as higher power 
d i s s ipa t ion wi l l r e s u l t . One can control the turn-on voltage 
to some extent by careful design of the aluminium grading 
p r o f i l e . 

Figure 5(a) shows the resu l t of simulating a 1-
dimensional pN heterojunction, a t zero b ias . The p-type 
(GaAs) doping i s 10 /cm , whilst „the n-type (Al sub 0.3 Ga 
sub 0.7 As) doping i s 2x10 /cm . Figure 5 (b) shows the 
associa ted aluminium pro f i l e , which is essent ia l ly abrupt ( 10 
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1-D Abrupt heterojunction simulation (a) Energy-band diagram, 
(b) Aluminium mole-fraction, (c) Carrier distributions. 

A ). The formation of a "spike" and a "notch" in the 
conduction band can be seen clearly, with an associated 
accumulation of electrons at the notch (figure 5 (c)). The 
notch in the conduction band will produce a trapping centre 
where recombination will be high. It should also be noted 
that the intrinsic Fermi-level is discontinuous at the 
heterointerface, this is a result of the fact that the 
conduction band edge depends on the assumptions of equations 
(11) and (12), that is that it depends on the difference in 
electron affinities. 

Figure 6 shows a junction with the same doping profile as 
in the previous example, however, the aluminium is graded over 
500A, from the interface into the n-type region. The spike at 
the interface is lowered by 0.307 eV, this will mean higher 
electron injection levels, and so higher gain transistors. 
I-V characteristics for the graded (500 A ) and the abrupt (10 
A ) diodes are shown in figure 7 
These plots demonstrate that the current is higher for a given 
bias, with the graded junction than it is for the abrupt 
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Figure 6. 

1-D Graded heterojunction simulation (a) Energy-band diagram, 
(b) Aluminium mole-fraction, (c) Carrier distributions. 

junction. One can explain this by looking at the energy-band 
diagrams of figures 5 and 6; the spike in the abrupt case 
rises up above the conduction band edge in the p type material 
when the junction is forward biased, thus maintaining a high 
barrier for electrons to be injected over. This barrier does 
not exist when the aluminium composition is graded, and the 
electron injection level does not suffer the same reduction. 
Also included in Figure 7 is the curve for a homojunction for 
comparison, the current is higher than for both heterojunction 
cases as holes are not prevented from taking part in the 
conduction. 

The finite difference grid used in the simulation of an 
HBT is shown in figure 8. The transistor is 1.2pm deep by 
4.0pm long, both emitter and base contacts are 1.0/im. 
Figure 9 shows the doping profile used in this transistor 
simulation, on a logarithmic scale (negative values correspond 
to a net acceptor level). It can be seen that the grid lines 
become far more closely packed in the vicinity of junctions, 
this is because the potential varies much more rapidly in 
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these regions. The error is also reduced in these regions by 
using the smaller step sizes. Imposing a bias of 1.5V at the 
base-emitter junction and 0.0V across the base-collector gives 
the potential distribution in figure 10. 
It can be seen that there is a barrier in the base region 
where the potential profile rises, corresponding to the p-P 
heterojunction. There is also a slight depletion of holes 
noticeable in the distribution shown in figure 11. 

CONCLUSIONS 

In this paper, the simulation of GaAs/AlGaAs 
heterostructure devices has been discussed. A simple 
modification to the basic "phenomenological" device equations 
has allowed the positional dependence of the band structure to 
be incorporated into a numerical model. These modifications 
can easily be made to device simulation codes, providing the 
various materials parameters are known. The model has been 
used to predict the I-V characteristics for a heteroj unction 
diode, and has shown that the spike in the conduction band for 
the abrupt case prevents the injection of electrons. This 
must be taken into account in the design of heterojunction 
bipolar transistors in order to achieve optimum emitter 
efficiency. A two dimensional implementation of the model has 
been used to predict the behaviour of the heterojunction 
bipolar transistor. In the near future the model will be 
extended to allow analysis of the high frequency behaviour of 
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t h e HBT on t h e e m i t t e r - b a s e grading p r o f i l e . 
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