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ABSTRACT

This paper describes a computer modelling system for use
in the study of these GaAs/AlGaAs heterostructure devices.
The model is based on the solution of the basic device
equations, which are solved using the finite - difference
technique, and results are given for both the one dimensional
and two dimensional cases. These results show that suitable
grading of the emmiter base junction is important in the
optimum design of the device.

INTRODUCTION.

With the advent of recent epitaxial techniques (MBE and
MOCVD), it has become possible to introduce an extra degree of
freedom into the design of semiconductor devices. It is now
possible to engineer the band-gap of the device, allowing a
flexibility hitherto wunattainable in conventional device
design. By careful control of band-gap and doping, it is
possible to control the injection or confinement of electrons
and holes. It is this which has paved the way for many of the

new GaAs devices currently being developed.

The essence of heterojunction bipolar transistors is the
confinement of holes to the base region. Changing the
composition at the emitter-base junction, from AlGaAs in the
emitter, to GaAs in the base, sets up an adverse "quasi-
electric" potential barrier that prevents hole injection into
the emitter. As holes can no longer be injected from the
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base, it is not necessary to have an emitter that is more
heavily doped than the base region, in order to obtain a
reasonable injection ratio (y). Two of the main time delays in
the bipolar transistor are the junction charging times, these
are RC time constants, so lowering the resistance will improve
the maximum frequency of oscillation £ _. Increased base
doping, considerably reduces both the basgm§ésistance, and the
emitter depletion capacitance. Sufficient reduction of these
two elements will increase the frequency range into the
millimetre wave area, and theoretical calculations have
predicted cut-off frequencies ft’ of over 100 GHz [1].

Recently reported results have shown HBT's to have
enormous promise in the fields of high speed digital I.C.'s
[2], MMIC's [3] and also in opto-electronics as a
phototransistor (4]. Particularly attractive is the
development of ECL circuits which have already shown
themselves to be the fastest silicon digital technology with
ft's of nearly 10 GHz.

In this paper, a simulation of the HBT, wusing the
finite-difference technique, is discussed. A one-dimensional
simulation has been used to examine the effects of base-
emitter compositional grading, on the current transport
mechanisms at this junction. Conclusions drawn from this
study have been implemented in a two-dimensional model of the
HBT in order to determine the optimum emitter mole-fraction
and grading profile.

PROBLEM FORMULATION.

The basic "phenomenological" device equations for
semiconductors used in device simulation work are (5] :-
V.(E) = q(C-n+p) (L)
where : T = ND - NAdn .
i - 3 v, - u (2)
e _ 1,5 _
at q V.Jp U (3)

Equation (1) 1is Poisson’s equation relating electric
field to enclosed charge. Equations (2) and (3) are the
current continuity equations for electrons and, holes, and they
are a statement of the conservation of charge. These
equations are general, and form a set of coupled partial
differential equations.

In a device of non-uniform composition the basic device
equations must be modified in order to take account the non-
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uniformity of the material parameters. The assumption that
the permittivity is uniform can now no longer be taken to
apply. In silicon device simulations where band-gap narrowing
is considered this variation is ignored, although it can be

very important. In the present non-uniform device Poisson'’s
equation is modified to :-
Ve.E + eV.E = q(TF=n+p) (4)

This simplifies when the device is of uniform composition
( Ve = 0) to the familiar form of Poisson’s equation.

The classical Shockley equations for current density [6]
must be extended to include extra terms. These take into
account the internal "quasi-electric" fields due to the
positional dependence of the band-gap, and "quasi-diffusion"
due to the positional dependence of the density of states [(71.
For a semiconductor at a constant temperature the particle
current densities are given by [6] :

—

n

P

- = np VE. (5)

- - PﬂpVEfp (6)

LS L

reference level

Ey

Figure 1.

Generalised Energy-band diagram of a non-uniform semiconductor.

from figure .1 the electron and hole Fermi-energies are given
by :

Efn-~q¢—(x-,xr)+kTexp§; (7)

- - - - + E + B
Eg, qp = (X =Xy )+ E, + KT exp N (8)
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where ! x_ 1s a reference energy level, ¥ is the electrostatic
potential, x is the electron afflnlty, E 1is the material
bandgap, n and p are the carrier concentrations and N and N
are the conduction and valence band density of states.

Substituting equations (7) and (8) into (5) and (6)
yields the following equations :-

3 kT kT

n = By (qE - vy + ——Vn - E:VNC) (9
- kT kT
J - E~9VUx - VE_ — ==Vp + ==
p T HpldE = Vx = VE, - 1D+ W) (10)

Equations (9) and (10) again simplify to the familiar
equation for current densities when the material is
homogeneous. Equations (2) - (10) completely describe the
system, subject to the appropriate boundary conditions, 1In
order to arrive at these equations the following assumptions
have been made :-

(1) All impurity atoms are completely ionised
(ii) Position dependent effective mass is still a wvalid
concept

(iii)  Anderson electron affinity rule applies

(iv) No interfacial charge exists at the heterojunction due
to lattice mismatch

v) Doping is sufficiently low to avoid degeneracy
(vi) Boltzmann statistics are taken to apply
(vii) Band-gap narrowing does not occur

(viii) Minority carrier mobilities are the same as for
majority carriers

Points (i1i) and (iii) assume that grading is
vsufficiently gradual" (7] this is implicit in equations (5)
and (6). Lundstrom and Schulke [8] have added an extra term
into these equations to model the influence of Fermi-Dirac
statistics on the Einstein relationship, this term is zero in
the limit of condition (V).

PHYSICAL PARAMETERS
Those parameters (defined in fig.l) relating to the band

structure, are based of the results of Dingle {8}, who derived
the following relationship:
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AE, = 0.85 AEg eV (11)
AE_ = 0.15 AE_ eV (12)
v g

Known as Dingles rule, this is a subject of much
controversy, with more recent measurements pointing towards
50% of the discontinuity occurring in each band [9), however
in this work (11) and (12) have been used, The variation of
the band-gap Eg’ at 300K is taken to be [10]

Eg(x) = 1,422 + 1.25x eV (13)

where x < 0.4 since only mole-fractions less than the direct-
indirect cross over point (approximately x = 0.45) are of
interest. The compositional dependence of the density of
states in the conduction and valence bands are [10) ‘

N (x) = (0.067 + 0.083)>/% % 2.5x10" em™> (14)
N (x) = (0.480 + 0.310)%/% % 2.5x10" en™ (15)

also the variation of the electron affinity is given by :
x(x) = 4.07 — 1.06x eV (16)

The net recombination rate is assumed to be given by a
simplified Shockley - Hall - Read model in which the traps are
located at band centre, and both carrier types have the same
lifetime 7=lns. Experimental results have shown this to be a
reasonable choice. The expression used is : ‘

np - n]%_
U = Tpeing) an

Hole mobility is taken to be independent of the mole-fraction
of aluminium in the alloy. This is reasonable since holes
contribute only slightly to the overall performance of the
device. However, the hole mobility - field dependence is
taken into account, as well as dependence on temperature and
absolute doping, resulting in the familiar expression for low
field mobility :
! 2
Klow = Ho t S cm /V.s (18)
N, + N
D A
1+ N
[ ref ]
temperature dependence is incorporated by :

300”1ow 2
piow(T,ND+NA) - 5 — cm /V.s (19)

The values of thgse parameters arg taken from referencel7[1lg
to be p_ = 50em”/V.s, p, = 330cm™/V.s, Nre = 3.232x10" "cm
and a=0.4956. Moreover, the field dependenceé is given by :



87
”I

___A%E_E (20)
1 ﬁ}ow

sat
Vear 1s the carrie7 saturation velocity, and for holes in
Gags, it is 1.5x10'cm/s. A similar relationship exists for
electron mobility, the dependency on field is described by
Freeman and Hobsons empirical relationship [12], giving for
GaAs :

Ho(T,E Nk, =

. VELOCITY-FILLD CURYR ~ DOPING DLPLHOENCE YELOCITY-FIELOD CURYVE = 1@ CLPLCEINCE
T 1 300K { Deaing ¢ m';«-’
1 //-X‘/"’"’"" 1.0
2 W \ 7 200K
EL I NN
g ﬂ/§§§§~\_ [ ~_
> S IS S———
Ll A e
g ’!//' . Q&}"‘:::T:::::::::::::::::
M !/‘/ ’/{/// 400K
N4 Y
: Fiela vem o wl? 0 Frele viem ' out?
Figure 2.
Velocity field characteristics of GaAs as a
function of temperature and doping.
v - v(E,T,NA+NB) -
8.5x10° E3
1+ 4 %
300p) B BygBopge (1-3.3x10D 5 4
eV s (21)
T 4
1+ E E
crit
where
Ecrit 4x10"Vem
with

3
8x10 cm2V—1s—1 (22)
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In the alloy AlGaAs, the mobility is reduced as the mole-
fraction of aluminium (x), is increased from zero, due to
alloy scattering. This is included into the model empirically
by scaling the low - field, room temperature value of mobility
so that :

Ppr(¥) = m(x) . ppn(0) (23)

m(x) 1s a monotonically decreasing function of the mole-
fraction x. As the relationship between electron mobility and
mole-fraction is not at all well documented it 1is hoped that
this approximation exhibits the correct behaviour, to a first
order at least.

FINITE - DIFFERENCE APPROACH

The device is simulated over a rectangular domain, this
is ideally suited to the planar device structure presently
under consideration. Within the simulation domain, the grid
spacings are perfectly general. Initially a coarse grid is
generated which depends on doping levels and the positioning
of geometric features. The mesh is then refined in those
areas where large gradients of potential or carrier profile
arise, in order to minimise the error in these areas (see
figure 8). The solution of the device equations (2) - (&) are
in terms of the three dependent variables ¥,n,p. Potential is
scaled in units of thermal - wvolts to reduce repetitive
calculations, whereas the carrier concentrations <remain
unscaled.

Poisson’s equation is expressed using the usual “five
point formula" based on the central difference Taylor
expansion figure 3.

['/’i+1,1"/’i,j BN RIER
d(cE) . by B
dx i,] i,j hi+hi—1

2

€341, 97%0-1,1 Paa1 1 7Vi-14

2
h, + N h, + b + 0(hT) (24)

+
i-1 i i-1

As seen from figure 3, i and j refer to the node index, ¢ is
the dielectric permittivity, Y is the discretised
electrostatic potential and h is the node spacing (
h, - x, .—x. ), an analogous expression can be written for the
deriva%-i\lze in the y direction. If the expressions for the
derivatives (24) are substituted for both directions, then an
equation for ¢ij can be expressed in terms of the four
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Figure 3.
Internal node on device plane, showing separations.

surrounding nodes, when this is carried out at every inner
node, a system of linear simultaneous equations are obtained.

[Al[¥] = (B] (25)

here [A] is the coefficient matrix, {¥) is the unknown vector
and [B] is a known vector containing the right hand side of
equation (4). The coefficient matrix (A] for boundary value
problems, is a sparse banded matrix, and so the solution of
(25) is best arrived at iteratively for a large system of
equations. The solution of Poisson’s equation is obtained by
using the successive over relaxation scheme (SOR) on the
Gauss-Siedel method. The method is more efficient than direct
methods, as the memory requirements are minimal, also round
off errors are limited to the last iteration.

The current continuity equations (2) and (3) are second

order parabolic differential equations in n and p. The
current density equations are formulated in terms of the
Scharfetter - Gummel equation, Because of the compositional
dependence in the HBT, two parameters §_ and § are
introduced, these come directly from equations (951 and (EO)

in -~ qpnnV(¢+0n)+anVn (26)

J_ = V(y-f_)—-qD V 27

p PV ($=0)=qD Vp (27)
where

(X-xr) kT Nc
o = Tt oialye (28)
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-, E -E N
. - (><xr)_(g gr)+Hm_\L (29)
|2 q q Q7N
Xy, i1s defined such that §_ =~ §_ = 0.0 when the mole-fraction x
~70.0. The modified equgt:long for the current density are now
used in the standard Scharfetter - Gummel equation fox the
current density at the "half node" points, figure 3. This
method 1is superior to the linear approximations used in
previous work, in that the potential difference between mnodes
is no longer a stability criterion, and allows larger space
steps (hi and k,) to be wused. Explicit schemes for the
solution S equlcions (2) and (3) in terms of the variables n
and p, using a forward difference in time may become unstable,
and have very strict convergence criteria

2

Ax
At < D (30)
Equation (30) is defined for a uniform mesh, where D is the
diffusion constant. For stability this condition is applied

to electrons as D_> D _ . Using an implicit scheme based on
the Crank - Nié}lolsgn method, this restriction can be
overcome. The implicit scheme 1s essentially a central

difference in time, and is stable for all time steps. The
finite - difference approximation to (2) and (3) then becomes

K+l k
i, _ 1. _ 3
n ——=o - -2—15 (v.:fn ktl V.3 k -u; ;G
L L 1,
k+l, . k
1,5 _ 1 (. )
P P - Loy Ml,ogz K (32)
At 2q Py,j Pij i,3
| ' 1J )
where - - - _
N -7, 3 -3
vF | . —dt1/2, =172, Jign/2  Yi,4-172 oy
1,3 h+h ey gy
2 2

Equations (31) and (32) again give the solution at a node i,j,
in terms of the four surrounding nodes. The solution is again
arrived at by iterating, using the Gauss - Siedel method.

BOUNDARY CONDITIONS

The boundary conditions imposed at the device boundaries,
can be split into two types. Dirichlet boundary conditions
(fixed) are applied at ohmic contacts, and Neumann boundary
conditions (derivative) are imposed at all free surfaces.

At ohmic contacts charge neutrality must exist and
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thermodynamic equilibrium is imposed, leading to :

at n ohmics

N

(r244n2y1/2

+T
n = x
2
2
- i
P T
at p ohmics
(r2+4n§)1/2+r
P = )
02
n = T% (34)

the boundary conditions on potential at a contact are given in
texms of the quasi-Fermi level :

¢ni - Vappi
¢pi = Vapp, (35)

where i is the contact number

At free surfaces the perpendicular field is set to zero

& .
an 0.0 (36)
also the perpendicular current is set to zero
dJn aJp
an an 0.0 (37)

The contact currents are evaluated by integrating the
perpendicular current on a path around the contact

I-I () ds (38)
SIMULATION RESULTS

The planar device structure analysed in this paper, is
considered to be a simplification of the mesa structures that
are most commonly fabricated., The HBT is a vertical device,
the dimensions of which are dependent on the crystal growth
technique being used.

Junctions grown by MBE can be as abrupt as a single
mono-layer, ( few A ) and indeed junctions are often grown to
such limits. For this reason the doping profile modelled in
the HBT 1is as shown in figure 4, being very simple when
compared to those in diffused transistors. The P base
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Figure 4.

Device geometry.

contact region 1s produced by implanting into the AlGaAs
emitter layer, and the side walls of the implant are assumed
to produce an abrupt PN AlGaAs homojunction. When biasing
such a structure, it might well be expected that the current
injection across this junction will dominate the device
characteristics; however this is not the case since the GaAlAs
homojunction has a higher built - in potential than the pN
heterojunction, and so does not turn on as early. The
collector contact is along the bottom of the device, it is
felt that this simplification 1is justified, since the
collector contact doping level is wvery high and will have
little effect on the contact currents. There are usually two
base contacts in a device of this type, the whole structure
being  symmetrical around the centre of the emitter
metalization, but by simulating only half of the device, the
run time and memory requirements will be halved, without any
loss of information., The aluminium mole-fraction profile at
the emitter-base junction is extremely important in the design
of HBT's. For example, the turn-on voltage experienced in the
transfer characteristics of the HBT is attributable to the
difference between the emitter and collector built-in
potentials. The existance of a turn-on voltage is highly
undesirable when designing digital circuits, as higher power
dissipation will result. One can control the turn-on voltage
to some extent by careful design of the aluminium grading
profile.

Figure 5(a) shows the result of simulating a 1-
dimensional pN hetigojugction, at zero bias, The p-type
(GaAs) doping is 107 /cm™, wq- st3the n-type (AL sub 0.3 Ga
sub 0.7 As) doping is 2x107 /cm™. Figure 5 (b) shows the
associated aluminium profile, which is essentially abrupt ( 10
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1-D Abrupt heterojunction simulation (a) Energy-band diagram,
(b) Aluminium mole-fraction, (c) Carrier distributions.

A ). The formation of a "spike" and a ‘"notch" in the
conduction band can be seen clearly, with an associated
accumulation of electrons at the notch (figure 5 (c)). The
notch in the conduction band will produce a trapping centre
where recombination will be high. It should also be noted
that the intrinsic Fermi-level is discontinuous at the
heterointerface, this is a result of the fact that the
conduction band edge depends on the assumptions of equations
(11) and (12), that is that it depends on the difference in
electron affinities,

Figure 6 shows a junction with the same doping profile as
in the previous example, however, the aluminium is graded over
500A, from the interface into the n-type region. The spike at
the interface is lowered by 0.307 eV, this will mean higher
electron injection levels, and so higher gain transistors,
1-V characteristics for the graded (500 A ) and the abrupt (10
A ) diodes are shown in figure 7
These plots demonstrate that the current is higher for a given
bias, with the graded junction than it is for the abrupt
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1-D Graded heterojunction simulation (a) Energy-band diagram,
(b) Aluminium mole-fraction, (c¢) Carrier distributions.

junction. One can explain this by looking at the energy-band
diagrams of figures 5 and 6; the spike in the abrupt case
rises up above the conduction band edge in the p type material
when the junction is forward biased, thus maintaining a high
barrier for electrons to be injected over. This barrier does
not exist when the aluminium composition is graded, and the
electron injection level does not suffer the same reduction.
Also included in Figure 7 is the curve for a homojunction for
comparison, the current is higher than for both heterojunction

cases as holes are not prevented from taking part in the
conduction.

The finite difference grid used in the simulation of an
HBT is shown in figure 8. The transistor is 1.2pm deep by
4.0pum long, both emitter and base contacts are 1.Opm,
Figure 9 shows the doping profile used in this transistor
simulation, on a logarithmic scale (negative values correspond
to a net acceptor level). It can be seen that the grid lines
become far more closely packed in the vicinity of junctions,

this is because the potential varies much more rapidly in
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Finite-difference grid used in simulation.
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these regions. The error is also reduced in these regions by
using the smaller step sizes. Imposing a bias of 1.5V at the
base-emitter junction and 0.0V across the base-collector gives
the potential distribution in figure 10,

It can be seen that there is a barrier in the base region
where the potential profile rises, corresponding to the p-P
heterojunction. There is also a slight depletion of holes
noticeable in the distribution shown in figure 11.

CONCLUSIONS

In this paper, the simulation of GaAs/AlGaAs
heterostructure devices has ©been discussed. A simple
modification to the basic “phenomenological® device equations
has allowed the positional dependence of the band structure to
be incorporated into a numerical model. These modifications
can easily be made to device simulation codes, providing the
various materials parameters are known. The model has been
used to predict the I-V characteristics for a heterojunction
diode, and has shown that the spike in the conduction band for
the abrupt case prevents the injection of electrons. This
must be taken into account in the design of heterojunction
bipolar transistors in order to achieve optimum emitter
efficiency. A two dimensional implementation of the model has
been used to predict the behaviour of the heterojunction
bipolar transistor. In the near future the model will be
extended to allow analysis of the high frequency behaviour of
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Carrier profiles in the HBT.
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the HBT on the emitter-base grading profile.
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