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SUMMARY 

In this work we consider a general network with dis
tributed parameter elements resistively coupled and 
additionally containing nonlinear capacitors. This 
network is a better model for the timing analysis of MOS 
integrated circuits than those previously considered. 
We define a global parameter "A-delay time" which 
expresses the speed of signal propagation in this cir
cuit. A computationally simple formula for an upper 
bound of this parameter is derived and compared with the 
bound obtained by numerical calculus. 

1. INTRODUCTION 

The major performance criterion for digital circuits 
is the speed of signal propagation. This performance 
is expressed by the "delay time", which is defined 
(and denoted) in many different ways by different 
authors, but having a single intuitive meaning: it 
is the time between the moment of changing the input 
variable and the moment when the associated output 
variable reaches a steady state value. 

Of course, at various stages of MOS LSI design 
one has to verify this performance. This can be done 
by CAD circuit programs, so called "circuit simulators" 
as SPICE, ASTAP and SCEPTRE. This kind of programs 
are very slow for usual handling in the initial stages of 
design due to the use of complete models of components 
and especially due to computing method (the integration 
of differential equations describing the network). 
This is why faster programs so called "timing simu
lators" were developed , C1-93, which use simpler 
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models of components and approximationand easily comput 
able formulae for the delay time. In this respect, 
modelling MOS chips by RC networks has become a well 
accepted practice C1-6D. The transistor is usually 
replaced by a resistor, between drain and source, 
which has a pullup or a pulldown value in ON state and 
» value in OFF state. Capacitances associated with 
the pullup source diffusion, contact cuts and the gates 
being driven are included, connecting respective nodes 
to the ground. In addition, transmission lines made of 
series resistors and shunt capacitors are models for 
connecting wires in MOS integrated chips. Withthis 
kind of models, the evolution of a MOS circuit is ap
proximated by a sequence of RC networks corresponding 
to various states of each transistor. 

It results from the above that the problem of 
estimating the delay of anMOS circuit reduces to that 
of an RC lumped network. For RC fan out ( RC trees ; 
networks, easily computable bounds of the delay time 
associated with every node (the input being the same; 
are given in C13 and are incorporated into timing 
analysis programs C1 ,U s 53. The extension of these_ 
bounds to mesh networks was given in C10D. Also, in 
C2D computationally efficient formulae for thedelay 
of any node were developed and included in a simulator. 

The present paper tries to improve the evaluations 
of the delay time, beginning from the following remarks: 

1. In all quoted papers the transistor interconnections 
are approximated by RC ladder networks._ The accuracy 
of this approximation (from the delay time point of 
view) is not clear, being studied only for one inter 
connection line C12D . The problem is too important 
to be neglected, as the advances in technology, 
the integrated circuit chip size, complexity and device 
packing density are continuosly increasing (e.g^ the 
prediction of a 0.5 ym feature size and 200 mm chip 
size by the late 80's appears to be reasonable C133-
As the minimum feature size is made smaller, the cross-
section area of the interconnection also reduces. At 
the same time, a higher integration level allows the 
chip area to increase, causing the length of the inter
connection to increase. That is why, for a very large 
chip with extremely small geometries, the delay time 
associated with interconnections becomes an appreci
able part of the total time delay, and in certain 
cases dominates the chip performance C13U- Conse
quently an increased attention is focused either to 
modelling C1UD or towards the technological advance 
C153 of the interconnections. 

All these considerations justify our intention 
to consider more elaborate models for the connecting 
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wires, described by telegraph equations. These equa
tions take into account the distributed resistive -
capacitive character of the lines and the supplemen
tary dielectric losses neglected in previous studies. 
Despite mathematical difficulties involved, this more 
exact modelling gives very easily computed final evalu
ations for the delay time. 

2. Let us consider the example presented in Fig 1.1 
-r-°vDD 

CND 
Fig 1 . 1 

Here an enhancement load nMOS bootstraped inverter 
drives the gates A and B through the three lines 
L., L , L (implemented in polycrystalline silicon, 
metal silicide or metal). 

In Fig 1.2 we have drawn a possible equivalent 
circuit for Fig 1.1 network (where the lines are rep
resented by using the Ghausi symbol) 

U 

Fig 1.2 

Most RC models considered in the quoted works have 
the capacitors exclusively connected between nodes 
and ground. As we see from the above example the 
capacitor C (boatstrap)does not fulfill this condition 
and so the Rubinstein evaluation C1D, for example, 
does not hold. The same happens if we consider the 
Miller internodal capacitances. In fact the "floating" 
capacitors cause many difficulties in simulators C16D. 
Below we shall deal with a very general network, 
including the "RC tree" from Cl.l».S3 or the "RC meshes" fros 
C2,10D, (see Fig 2.1),which eliminates the above 
constraints. 

3. The RC networks considered in [1,2,10,113 (with 
which our work is especially related) have a single 
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input source V (or V ), and the authors evaluate a 
delay time associated lo each node. Even the above 
example shows that it is possible that two inputs V\n 
and V are simultaneously connected. The ability to 
handle this case rests on a clear definition of a 
global delay time, which expresses the rate of evol
ution of the whole network from the initial condition to
wards the steady state, when all (or a part of) inputs 
have step variations. 

An asymptotic stability property of our general 
network allows us to obtain an upper bound of this 
delay time. The tightness of this bound is then veri
fied by numerical calculus. 

Thelast remark: the simplicity of the RC model 
of the transistors considered in all above quoted 
works gives obvious errors in the delay time of devices. 
Consequently, most authors consider linear RC models 
giving only the time associated with interconnections 
C1,103. Of course many efforts must be made to unify 
the devices and the wiring delay. Ouraimis to give 
computationally simple evaluations taking into con
sideration more realistic models for transistors and 
is therefore difficult to achieve. Yet it seems 
that some steps have been made, especially to include 
nonlinearities [3,113. To the same goal we consider 
here the capacitors as nonlinear elements. 

2. STATEMENT OF THE PROBLEM 

Let us consider a linear resistive structure with 
2n+m pairs of terminals, described by a constant 
matrix G of conductances and a vector B depending on 
sources. Because our interest is in step sources, 
the vector B may be supposed constant in time. Hence, 
we shall assume that the resistive multiport introduces 
the constraint 

(2.1) i = -Gu + B, 

where i and u are 2n+m vectors of terminals currents 
and voltages. 

As we see in Fig 2.1., at first 2n terminals of 
the multiport are connected by n distributed parameter 
elements. 
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+ W 
Fig 2. 1 

For each of these "r-c-g lines" we can write the well-
known telegraph equations: 

(2.2) 

( 3 Uk ( t' x ) = -r.ik(t,x) 
3x k k 

aik(t,x) 

3x 

k = 1,2, 

3u (t,x) 
ck at 6 k u k ( t ' x ) 

Everywhere in the following we shall consider constant 
r ,c^ and g parameters and r >c >0, g >0. Also, at 
last, m pairs of terminals^are connected nonlinear 
capacitors, charge controlled by functions f : ]R -* 3R , 
k = 1 , . . . tn. 

From Fig 2.1 and by using (2.1) and (2.2) we 
easily derive the following mathematical model of our 
problem: 

- a system of parabolic linear equations 

3u, 

(2.3) 

1 
32», 

at r, c, , 2 
k k 3x Ck k 

x£C0,d 1, t > 0, k = 1,...,n 

- a set of nonlinear boundary conditions 
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( 2 . H ) 

1 8 U 1 

1 a u i 

3 u „ 

n 
8u 
TH1 ( t , d ) r 8x x ' n n 

_1 
r 

d q 

d t 

dq 

d t 

u . ^ t . O ) 

u / t . d j 

u ( t , 0 ) 
n 

u ( t , d ) 
n n 

f / q , ) 

f ( q ) m m 

+ B 

a n d , o f c o u r s e , t h e i n i t i a l c o n d i t i o n s 

( 2 . 5 ) f Uk 

1 V 0 ) " qo 

u , , ( 0 , x ) = u ( x ) , k = 1 , . . . n 

, k = 1 , . . . in 

The following assumptions will be taken into 
considerat ion: 

A : The functions f : ]R + 1R k = 1,...,m are 
continuous and there exist strictly positive real 
numbers M, and M, such that for every x,y f. 1 ve h 

-k k 

(2.6) Mjx-yl < lffcU) " fk(y)l < Mklx-y|. 

A : There exist positive constants C^.-.C , 
such that for each i = 1,...2n we have 

(2.T) 
2n 2n+m 

G. .+ I |G. . I+ I IG. .IC. M, p 

a n d f o r e a c h i = 2 n + 1 2n+m i t h o l d s 

2n 
- G . . M . 0 C . 0 + Z I G . . I + 

n - i - 2 n i - 2 n . , i j 

dn + m _ 
+ Z | G . . |M . _ C . „ <0> 

j = 2 n + 1 , j * i ^ J " 2 1 1 J " 2 n 
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In addition, we shall suppose that the initial 
conditions (2-. 5) are so smooth that our problem (2.3) + 
+ (2 . k )+ (2 . 5 ) has a unique solution in the classical sense, 
i.e. there2 are n functions u : [0,»)x[0,d ]-> ffi , C in 
t^me and C in space, and m functions q :C0,<»)->• 3R , 
C in time, satisfying the above equations. Also, we 
shall suppose that there exist twice differentiable 
functions u ;[0,d ]+ K , k = 1,...,n and the constants 
q.j,...,q which satisfy the time independent (steady 
state) problem corresponding to ( 2 . 3 ) + ( 2 . It ) + ( 2 . 5 ) . 
In the case m=0 we considered the existence and unicity 
problem in C17U and C18D. Some remarks about our 
hypotheses: 
- The hypothesis A , allows us to consider a very 
large class of nonlinear characteristics of capacitors, 
among which the important engineering cases of con
tinuous differentiable (with bounded derivatives) and 
piecewise continuous functions. 
- The constants M and , M,in(2.6) have to the dimen
sions of [capacitance!] while the constants C 
from (2.7) and (2.8) have to the dimensions of 
capacitance. 
- The relations (2.7) and (2.8) seem to be cumbersome. 
In fact they are very natural because, in the case of., 
linear capacitors, we have M = M = [the capacitance] 
and if we choose C = the capacitance, then these 
relations become 

2n + m 
(2.9) - G..+ I IG..I < 0 . 

1 1 o=i,j*i 1 J 

This condition is the very well known "diagonally row-
sum dominant" property that can assure the existence 
and unicity C17D, C18D and is frequently considered 
in circuit theory. 
- As our examples and our experience show, the above 
hypotheses are not very restrictive, they are 
satisfied in most practical circuits cases. 

3. THE TRANSIENT BEHAVIOR. DELAY TIME EVALUATION 

The global behavior of our network can be described by 
a fuction D:C0,°O->- IR named "delay" and defined by 

[
q . (t )-a .T 

max max i /.*. \ - / M I I 
1<i<n 0<x <d.lUi(t'x)-ui(x)l'ma^ C ~ J 

(3.1) D(t) = - - ~ ~ X ^ 2 ^ _ . 
[max max , i \ ~ i \\ q-^~q- I 

ma4l<i<n 0<x <d. u i O ( x , - u i ( x ) h ^ ^ p L - J 
u - - - - l 1<i<m C. J 

- - l 
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The delay begins from 1 (corresponding to the 
initial conditions) and tends to 0 (corresponding to 
the steady state). If we choose XG(0,1) then, the 
speed of this evolution can be expressed by the last 
moment when the delay passes through the X value. In this 
way, we are conducted to define the "X delay time" as 

(3.2) T = supjt;D(t) = xl 

In the following we shall find an upper bound 
T for this T . We shall give our arguments only in 
outline. The reader can find the details in C19-233. 
First of all a useful remark. By intuition we can 
say that the delay does not change if we invert the 
terminals of any line. This fact can be rigorously 
proved C22D . The initial notation of the terminals 
of the lines corresponds to the matrix G and to the 
sequence 6 = (6 ,...,6 ) where 6. = 0 for all j. The 
inversion of the termiSals of thê k-th line willgbe marked 
by 6 = 1, and will correspond to a matrix G =Ĝ  » ' ' 
which has the 2k-1-th and 2k-th rQws interchanged as 
well as 2k-1-th and 2k-th columns. In C22D we have 
proved that the initial problem (2.3 ) + ̂ 2.h ) + (2.5 ) and 
the similar problem constructed with G , where 6= 
(6 ,...6 ) and 6k = 0 or 1, have the same delay. But 
the upper bound given below 0f the X-rdelay time will 
depend on G6 and will be denoted by T. . It is clear 
now that we can take for T the minimum value of these 
upper bounds, namely 

(3.3) T-, = min T? , X 6 A 

where the minimum with respect to 6 means the minimum 
with respect to all 2 n cases appearing when we change 
the matrix G by th.s indicat ed manner. . To find T^ we shall 
use in the following the matrix G instead or G. It 
is easily seen that the relations (2.7) and (2.8) 
are equivalent with the same relations written with the 
elements of G . 

For an arbitrary compact space K, we shall denote 

Z = {h:n COjd.DxK-v K n + m with components h . : CO , d . 1+TR , 
i = 1 i 1 1 

i-1,...,n continuous and h . : K-> 3R constants} 
a Banach space with the norm X 

(3.1*) I Ihl I = max max I h . (x . ) I 
1<i<n+m xi 1 1 

We shall make a change of variables in our problem 
(2.3) + (2.1»)+(2.5), namely 
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a, x 
k 

( 3 . 5 ) 
u. ( t , x ) = v. ( t , x ) c o s - r ,xGC0,d , 3 , k = 1 

q k ( t ) = V k + n ( t ) , C k ' k = 1 > " - m . 

w h e r e t h e c o n s t a n t s a w i l l be c h o s e n b e l o w . L e t u s 
t a k e t h e f o l l o w i n g s u b s e t of Z: 

V(A) = { h £ Z ; h , h , . . . h t w i c e d i f f e r e n t i a b l e a n d 

1 3 h i ( 0 ) 

r 1 3x 

1 B h / d , ) 
+ r cosa . 

r 1 9x 1 

• 3h (0) 
1 n 
r 3x 
n 

, 3h (d ) 
, 1 n n + — -7— cosa r 3x n n J 

~<s =-G 

IV0) 

h 1 ( d 1 ) c o s a 1 

h n ( o ) 

h (a )cosa 
n n n 

f 1 ( h n + 1 C 1> 

f (h M C ) in n+m m 

~<5 

a h (d ) . 
n n n sina r d 

n n 

+B 6 } 

H e r e we h a v e d e n o t e d by G t h e 2nx(2n+m) m a t r i x e x 
t r a c t e d from u p p e r p a r t of G , a n d by B t h e v e c t o r w i t h 
f i r s t (6 i n v e r t e d ) 2n e l e m e n t s from B. Le t u s t a k e 
t h e o p e r a t o r A:P(A)-»- Z , d e f i n e d b y : 
/h„ 

1 

n+m' 

x x ) =an n+m vector with components: 
1' ' n 

J _ 8 W ( 2 
r k C k 8x2 r k C k d k 

'k + V k , 8 h k ( x k ) , ° k 
t g - ; )—?^ ( — 

3x, 2 + t\^ 
k VA 

•n 

k-n 

for k = 1 , . . .n and 

,6 n 
I G" „ . h . ( 0 ) + F. Gu,, _ . h . ( d . ) c o s a . + 
. . n+k,2 j -1 \ j v ' . n+k,2j j j j 

+ F G . f .(h .C.) fo r k = n+1 , . . . , n+m. 
J— I 

With these, we can easily show that our problem is 
equivalent with the following abstract Cauchy problem 

(3.6) J 

J^ v(t,.) = Av(t,-) + B* 

v(0,') = a function with components 

u («)/cosa j for k = 1 , . . . ,n and 
K. 

qk-n,0/ck-n 
for k = n+1 ,n + m 
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where B* is a vector with zero for the first n com
ponents and b_ , /C, , k = 1,...m for the following 
ones. 2 n + k k 

Let us further denote 
' 2n „ 2n+m 

(3.7) 8? 

I |G?. |+ z " '" |G? . |C . ? nM. , for i = 1 , . . -
j = 1 , j * i ^ j=2n+1 1 J J 2 n J 2 n . . . 2 n 

2n 2n+m 
I |G?. |+ Z 

1 J j=2n+1, j* i j = 1 
G?. |C. n M . 0 , for i = 2n+1, 

i j j - 2 n j - 2 n ' . . . > 2 n + m . 

The f o l l o w i n g lemma i s from t h e mathematical point of view 
o u r b a s i c r e s u l t . 5 

Lemma 3 . 1 Under t h e hypotheses A1 and AQ l e t Yj» 
j = 1 , . . . , n be t h e u n i q u e s o l u t i o n i n (0,-g) of 
t h e e q u a t i o n : 

(3.8) cosY* = [ s * . + V ^ ) 2
+ r V ( G 6 1 

2 j ' r . d . - 2 j . 2 j r . d . 
/2(G, 1 

2 j , 2 j r . d . 
) . 

I f we t a k e 

(3.9) w" 

, 6 ^2 
( Y ; - E ) 

max Jmax L_i J. 
M<j<nL d . r . c . j 

6 +s<5 
~°Ti+.i,n+.i n + j q 

;max l. c . 
n+Kj<n+m J""n / 

1<j<nl 

J J J 
then, the operator A - to I, constructed with a . = 
Y--e £ (0.—). is dissinative in the suace 7, n J For the proof we"refer to [21,233. 

Theorem 3.1. If A1 and A hold, then for all t>0 

% 6 
D(t) < e /min COSY- and then 

1<i<n x 

(3-10) TJ = !^S 
A o 

This theorem gives a global asymptotic stability 
property for the steady state solution, i.e. the dy
namic state tends to the same steady state for any 
initial conditions. 

For the sake_of clarity we shall resume the pro
cedure to obtain T , namely in the linear case where 
the writing is shorter. 

Procedure 3.1 (for computing T ) 
Step 1. Given the matrix G. Compute for each i = 1,. 
...,2n+m, the size 

2n + m 
S. = Z |G I 

k=1 1K 

k*j 
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Step 2 . For each j = 1 , . . . ,n c a l c u l a t e 

(3.11) cosy* = s o , + / s 2 + - L - ( G O , oJ!+ - ! 2j 2j r . d v 2 j ,2j r .d 
0 0 0 0 

)/2(G 

or 
S 

2j ,2j r . d 
J J 

) 

'2j-1+^S2Vl+ ^ ° 2 j - 1 , 2 j - 1 + 7 X > / 2 < V l , 2 j - 1 + r-X") 
J J J J 

6 

J_ 
' .c. 
J J X ft 

Step 3. For Y. from above, with G .=G 
5~ J n+j,n+j n+j,n+j 

a n d Sv,x;= s„±; f o r j=n+1 ,...,n+m and with e = 0 com-
0 n J <S 

pute the 2 values of u 0 from (3.9) 
Step It. The relations (3.10) and (3.3) give the de
sired value of T.. 

As we see we found a very simple and fast method 
to compute the upper bound of the A-delay time. 
h. THE EXAMPLES 

The following example is_given for the purpose to 
verify the tightness of T^ to T . 

Let us consider the fan-out circuit from Fig U.1, 
with two inputs E =E =1v, with lumped elements having 
values: R =Jn, R2=1fi, C =3F, C2=3/2F, C = 3F, and with 
four r-c-g lines. j 

Fig k . 1 

The lines have the parameters: r.d.=1ft for i=1,...,U, 
c ^ =3/2F, c d =1F, c d =5/1+F, c.*dSl*/3F. This results 
a 12x12 G matrix whose nonzero elements are: G =2, 
G22 = G 3 3

 = G99 = 3 / 2' G U = G55 = G77 = G10 J10
= l l> / 9> G 6 6 = G 8 8 = 

G11 11 = G12 12 = 6 y / 5' a n d t h G n o n d i a S o n a l ones: G
2 3

= G 3 2 = 

= G29 = G92 = G39 = G 9 3 = ~ 1 / 2' GU5 = G5U = GU7 = G 7 ^ = G U , 1 0 = G10, IT 
=G57 = G75 = G5,10 = G10,5 = G7,10 = G10,7 =" l t / 9' G 6 , 1 2 = G 1 2 , 6 = 

= Gg . =G p. = ~^/5. The nonzero elements of B are 
b 1 = 2 \ b 2 = b ^ b 9 = 1 / 2 . 

The following table summarizes the calculus for 
delay time in Procedure 3.1. 



333 

T a b l e 

6 

0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
1 100 
01 10 
0 0 1 1 
1 0 1 0 
1 0 0 1 
0 1 0 1 
1 1 1 0 
1 101 
0 1 1 1 
1 0 1 1 
1 1 1 1 

U.i 

c o s y . 

0 . 8 6 3 
0 . 5 7 7 
0 . 8 6 3 
0 . 8 6 3 
0 . 8 6 3 
0 . 5 7 7 
O . 8 6 3 
O . 8 6 3 
0 . 5 7 7 
0 . 5 7 7 
O . 8 6 3 
0 . 5 7 7 
0 . 5 7 7 
O . 8 6 3 
0 . 5 7 7 
0 . 5 7 7 

c o s y 2 

0 . 9 3 8 
0 . 9 3 8 
0 . 8 6 3 
0 . 9 3 8 
0 . 9 3 8 
0 . 8 6 3 
0 . 8 6 3 
0 . 9 3 8 
0 . 9 3 8 
0 . 9 3 8 
0 . 8 6 3 
0 . 8 6 3 
0 . 8 6 3 
0 . 8 6 3 
0 . 9 3 8 
0 . 8 6 3 

C O S Y -

0 . 8 8 0 
0 . 8 8 0 
0 . 8 8 0 
0 . 9 3 8 
0 . 8 8 0 
0 . 8 8 0 
0 . 9 3 8 
O . 9 3 8 
0 . 9 3 8 
0 . 8 8 0 
0 . 8 8 0 
0 . 9 3 8 
0 . 8 8 0 
0 . 9 3 8 
0 . 9 3 8 
0 . 9 3 8 

c o s y ^ 

0 . 8 8 0 
0 . 8 8 0 
0 . 8 8 0 
0 . 8 8 0 
0 . 9 3 8 
0 . 8 8 0 
0 . 8 8 0 
0 . 9 3 8 
0 . 8 8 0 
0 . 9 3 8 
0 . 9 3 8 
0 . 8 8 0 
0 . 9 3 8 
0 . 9 3 8 
0 . 9 3 8 
0 . 9 3 8 

6 

- 0 . 1 2 U 
- 1 . 1 2 U 
- 0 . 1 3 3 
- 0 . 0 9 9 
- 0 . 0 9 2 9 
- 0 . 1 3 3 
- 0 . 0 9 9 
- 0 . 0 9 2 9 
- 0 . 1 2 U 
- 0 . 0 9 2 9 
- 0 . 0 9 2 9 
- 0 . 0 9 9 
- 0 . 0 9 2 9 
- 0 . 0 9 2 9 
- 0 . 0 9 2 9 
- 0 . 0 9 2 9 

T 
0 . 1 

1 9 . 7 5 
2 3 . 0 0 
18.1*2 

kh.'jk' 
2 6 . 3 7 
21 .1*5 
2k.-Jh 

• 2 6 . 3 7 
2 3 . 0 0 
3 0 . 7 0 
2 6 . 3 7 
2 8 . 8 1 
3 0 . 7 0 
2 6 . 3 7 
3 0 . 7 0 
3 0 . 7 0 

T 
0 . 5 

6 . 7 8 
1 0 . 0 2 

6 . 3 2 
8.1+9 
9 . 0 U 
9 . 3 5 
8.1*9 
9.01* 

1 0 . 0 2 
1 3 . 3 8 

9 .01* 
1 2 . 5 5 
1 3 . 3 8 

9.01+ 
1 3 . 3 8 
1 3 . 3 8 

As we see, T =18.1*2 s and T 5 =
 6-32 s. The values 

of delay time'numerically computed (Crank - Nicolson 
method in time and finite element method in_space 
(linear elements) - see detail in C22])are T ,=7.1 s 
and T =2.11. (see Fig 1*.!*). ' 

Figure I*. 2 shows the approximation for u.(t,») 
for different time moments t (indicated by — 7 as well 
as the steady state solutions u.(«) i=1,...,U (indi
cated by ) 

lr»t 

Fig 1*.? 

In Fig U.3 we see approximation for u.(t), i=5,...,8 
for te(0,l*0) . 1 
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uS VI* l l M Ut VI . lUM III H i l W ut n. U« 

F i s 1+ . 3 

Figure k.h shows the a-priori upper bound for the 
delay time (obtained by Theorem 3.1, 6=(0,1,0,0)) 
as well the delay time obtained from the discrete 
model (computed delay). 

The delay lime 

Tun* 

Fig it. h 

For further numerical examples (linear and non
linear cases) we refer to C17 - 23H. 

The authors are indebted to Mr. V. Hara for his 
assistance in numerical tests. 
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