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SUMMARY 

Our user oriented process simulation program called APT 
(Advenced Program for Tecnhology) has been implemented 
on the IBM personal computer and its compatibles. APT 
can simulate most up-to-date process steps in 
two-dimensions and even in three-dimensions for the 
diffusion and ion implantation steps [1]. APT has the 
unique capability among two dimensional process 
simulators to determine the impurity distribution in the 
whole Si-Si02 system. At local oxidation the oxide 
shape is calculated by a general solution procedure 
based on steady-state oxidant diffusion and viscous flow 
of the oxide elements. As an extra feature APT can also 
simulate layer etching and deposition. Physical models 
as well as numerical techniques are discussed in the 
paper. The power of APT is illustrated by numerous 
simulation results. 

SOLUTION OF THE DIFFUSION EQUATION 

The governing equations for the redistribution of 
impurities during local oxidation are as follows: 

Diffusion equation in the silicon: 

3f±- = div ( D.s.grad C.s.) 
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Diffusion equation in the oxide: 

—Ar^- = div ( D. grad C. ) dt v joxB jox; (2) 

Boundary condition on the Si-Si02 interface: 

D.G, / j b l = v C.e.(k-cO+D. ^ ° X 
jSi on n jSiv ' jox <3n (3) 

On the symmetry axes: 

3c 
^ 

to 
jox 

"olT-
(4) 

where: 
k is the segregation coefficient, k=C /CG. 

OX Ol 
ri is the unit normal to the Si-SiO„ interface 
vn is the oxid growth rate, normal to the interface 
C.q.jC. denote the concentration of the j-th impurity 
JD1 J OX 

D.c.,D. „ are concentration dependent diffusivities 
JOX JOX 

OL is the amount of Si consumed to produce one unit of 
oxide (0.44) 

Fig. 1. Triangle mesh at local oxidation. 

The governing equations are approximated as follows. 
Let's consider the triangle mesh in Fig. 1. 
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Assume C(x,y) to be a linear function of position in 
each triangle. Then for a given triangle 

grad C 
(Cn _+ _+ 

*-"n) s2 ~ ^2~^0^ sl 
J0 

sl 4 
(5) 

where: 
CQ, C-, C2 denote the concentrations at the respective 

vertices 
"JsT. , "s*„ are the side vectors from C„ to C1 and CL to Cr, 

respectively. s" represents the vector rotated 
clockwise by an angle 7T/2. 

Using Gauss' theorem-' 

div ( D grad C ) dV = D grad C dA 

J 

(6) 

around the mesh points, the right hand side of the 
diffusion equations (1),(2) can be easily 
discretized. More details of this technique may be found 
in [16]. It can be shown that the resulting finite 
difference equations are identical to the finite 
element equations. Making use of (5) and 

3c 
IT n grad C (7) 

the discretisation of boundary conditions (3),(4) is 
straightforward. The moving boundary problem in local 
oxidation is solved through continuous grid deformation. 
As the oxidation is proceeding the grid is deformed step 
by step conforming to the oxide shape (see Fig. 1.) The 
total change of concentration is 

dC 
dt 

where 
[6]. 

3c A -
"W + vg grad c (8) 

v is the velocity of the respective grid point 

Euler's implicit method has 
discretization of this equation. 

been used for time 

The resulting linear matrix equations are solved by 
Stone's method [2]. Coupling and nonlinearities are 
treated in a similar way as in [4]. 
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VERIFICATION 

We checked our algorithm by 
solution with some exact 
solutions [3], [5] and the 
algorithm used in BICEPS [4]. 
with less then 0.005 relative 
coarse 20x20 grid, 
in Figs. 2 to 6. 

comparing our numerical 
one dimensional analitic 
coordinate transformation 
There was a good agreement 
error, even on a very 

The details of these tests are shown 

1 -• 

comparison with 
r3],rel. error 
is 0.0001 
t=loo min. 
A=C205 

Si 

Fig. 2. Comparison 
with a ID analitic 
solution obtained 
by Grove [3]. 

3 /am 

comparison with 
[5] ,rel. error 
is 0.001 

Si 

Fig. 3. Comparison 
with a ID analitic 
solution obtained 
by Av-Ron [5]. 

SiC, 

o jam 
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t=100 min. 
v
0X
a0'S )™/h 

grid: 20 x 20 

5 jim 

algorithm 

Fig. 4. 
Equiconcentrational 
lines obtained by 
APT algorithm. 

Fig. 5. 
Equiconcentrational 
lines obtained by 
BICEPS algorithm [4] 

3 m 

concentration along the 
bird beak 
rel. error:0.005 

iUUiiU-'b 

3 jum 

Fig. 6. Comparison 
of the algorithms 
of APT and BICEPS. 
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DIFFUSIVITY MODEL 

The diffusion coefficient as a function of vacancy 
concentration is given by Fair [7], 

D = B* + D^i)*D-(»-| +D=(=-)
2 

APT takes into account the following secondary effects: 

- OED 
- excess vacancy concentration due to high phosphorous 
concentration [8]. 

OXIDATION MODEL 

Our two-dimensional physical model is based on steady 
state oxigen diffusion and slow viscous flow of oxide. 
Similar models have already been described in 
literature [11],[12],[13]. However, our solution method 
is different. We apply the same grid deformation and 
approximation technique as for the determination of 
dopant concentration. This way the same grid can be 
used for the representation of dopant and oxidant 
concentration, as well as for the determination of the 
velocity and pressure distribution in the silicon 
dioxide. 

The oxidant concetration is obtained by solving the 
steady state diffusion equation: 

div( Dox grad C ) = 0 (9) 

where Dox is the oxidant diffusivity. The boundary 
conditions applied are: 

On the Si-Si02 interface [11] 

F=kC (10) 

where F is the oxidant flux normal to the interface, k 
is the oxidation reaction rate. 

On the oxidant-oxide interface equilibrium oxidant 
concentration is assumed. 

The velocity and pressure distribution of the oxide 
elements are obtained from the steady Navier-Stokes 
equations: 
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div grad V = grad P 

div V = 0 

(11) 

(12) 

where u is the viscosity, V is the velocity, P is the 
pressure of the oxide elements [11]. 

On the Si-Si02 interface the velocity of the oxide 
elements is fixed [11],[13]: 

V = - (1- 00 jr 
Nl 

(13) 

while on the oxide surface the velocity is unknown and 
the pressure is in equilibrium with the ambient pressure 
or with the pressure of the nitride layer. At the 
nitride boundary we calculate the pressure through beam 
bending theory. 

Equations (11) and (12) are solved by the artificial 
compressibility method [11], [14]. The problem of 
missing boundary condition for V on the oxide surface is 
eliminated by imposing an extra 

dn (14) 

boundary condition on the surface [15]. 

An example of two-dimensional oxidation is shown in 
Fig. 7. Fig. 7a. shows the calculated oxide shape and 
equicontcentration lines of the oxidant. In Fig. 7b the 
velocity of the oxide elements is shown. 

Fig. 7a. Bird's beak 
shape and oxidant 
distribution obtained 
by 2D oxidation model 

i i * 

Fig. 7b. Velocity 
distribution of the 
oxide elements. 
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IMPLANTATION 

The ion implantation model of APT allows several layers 
and masks of complicated shape. The only assumption we 
make that the layers can substitute each other with an 
appropriate choice of the substitute. The width of the 
substitute is calculated numerically assuming a 
longitudinal Pearson IV distribution. For shaped layers 
the total ion beam is subdivided into parallel 
elementary beams and the above technique is used for 
each elementary cross section with a Gaussian lateral 
distribution. The resulting distribution is determined 
by numerical integration. For the two-dimensional case 
the elementary lateral Gaussian distribution is 
one-dimensional, for the three-dimensional case a 
two-dimensional Gaussian lateral distribution is used 
for each elementary beam. 

The dopant distribution for the 2D case can be 
calculated as follows, 

C(z,x) = :. , * \N(z,x') expf- (*-*') )dx'(15) 

V^^PLATJ-^ \ 2^RPLAT/ 
where z and x are longitudinal and lateral coordinates 
respectively. N(z,x) is calculated numerically for 
every x. For a given x in the i-th layer: 

N^z.x) = Fi(z-zi+ \±) zt < z < zi+1 (16) 

where F is the distribution is the homogenous target. 
The Yi displacement is computed solving the equation: 

^ = 0 , < J Fi(z) dz = ̂ 2 Qj i > 1 < 1 7) 

where Q is the total number of impurity atoms implanted 
into the j-th layer. 

ETCHING ANT) DEPOSITION 

APT allows up to 10 covering layers on the silicon 
surface. Every layer is defined by the nodes of a 
broken line approximating the profile of the layer. 
Etching or deposition results in the succesive 
displacement of the broken line. During every step a 
number of new nodes are generated for a more accurate 
profile description. To avoid an extreme increase of the 
computation time following every time step the 
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unnecessary nodes are deleted at places with higher 
radius of curvature. Every line passes the simulated 
area from the begining to the end even if the layer 
represented by the line is missing in some regions. In 
these regions the nodes of the layer with zero thickness 
have to coincide with the respective nodes of the 
underlaying layer, otherwise the layer structure 
degenerates due to the rounding errors. 

APT can simulate wet and reactive ion etching at 
present. Fig. 8'. shows an example of wet etching. 

2.2a_ 

i.8a_ 

1 1 
V 

1 i.tt 

n i t r i d e 

oxide--/ 

0 3 ! 

Fig. 8. Wet etching 
of Si02 through 
nitride window. 

The deposition model takes three different physical 
mechanism into account [10]. They differ in the local 
deposition rate dependence of the angle of incidence. 
They are called "isotropic", "cosine", and "cosine 
squared" cases respectively, and are shown in Fig. 9. 

2.<;e_ 

2.8S_ 

1.G0. 

isotropic 
\sr^Z~- cosine_ 

•cosine* 

v^ 
Fig. 9. Deposition 
models of APT 

When performing a deposition step, the model combines 
the above three cases according the the technological 
conditions. Deposition of a sputtered layer over 
reactive ion etched silicon oxide structure is shown in 
Fig. 10. 

Fig. 10. Deposition 
of a layer with 
sputtering. 



589 

In this section the capabilities of APT are illustrated 
by the simulation of different steps of NMOS technology. 

In the example shown below three sequential steps of 
the NMOS technology have been simulated by APT. 

EOTON ;s. UKN •- i.eec+is; J UNE/DEC 

1.20. 

e.ese_ 

B.̂ .ee_ 

0.00, 

0.P3 MICRON 

2.00.. 

1.00-

.00 

BORON :3l LM'.N - VeE-MS: U LINE/ 

i i i i 
e.ee 1.00 2.00 

MICRON 

Fig. 11. Field area 
after field 
implantation. 

Fig. 12. Boron 
distribution in the 
Si and Si02 after 
local oxidation. 

1.80_ 

1.C0_ 

t.G 

oxide 

I I 

nitride 

"" 

Si 
l i 

3 .It 

Fig. 13. Layer 
shape after 100 nm 
oxide etching. 



590 

The following figures show some tipical final 
distributions of NMOS technology in different cross 
sections. 

DONOR ;5 ; Ctl'.N •- 1.eeC+1S; ? LINE/DEC 
ACCEPTOR ;s> W I N •-• i.eeL>i3; ? L:NE/DEC 

1.(38 

1 .20 -

e.sea. 

e . ^00_ 

0 .00 

0.EB 1 - e z HICRON 2 " e e 

DONOR ;G4 CilIN - I . eBE+K i : 2 LINE/DEC 
ACCEPTOR ;5 , CHIN - 1.C2E + 15: ? L I N L / R E C 

1.2B_~ 

e.e?e_ 

e.cee_ 

0.B0 

tlXROU 2.22 

DONOR ;5i CHIN - i.eeE+is: 2 LINE/CEC 
ACCEPTOR ;5, CMIN = \.ZZE + YJ; 7 LINE/DEC 

1.G0-

1.28_ 

0.800_-

0 . 4 0 0 4 

0 .00 

8.22 1 - e Z MICRON 2 ' 2 2 

Fig. 14. Distribution 
of B and P in the 
field area and the 
depletion channel. 

Fig. 15. Dopant 
distribution in the 
enhancement channel-
-source area 

Fig. 16. Final 
distribution in the 
field-source region. 
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The following figures show the perspectivic view of the 
same distributions as Figs. 14 to 16. 

oxide 

Fig. 17. Distribution 
of B and P in the 
field area and the 
depletion channel. 

Fig. 18. Dopant 
distribution in the 
enhancement channel-
source area. 

Fig. 19. Final 
distribution in the 
field-source region. 
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