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Summary 

An initial meshing and a subsequent remeshing strategy 
suitable for the efficient simulation of non-linear dopant 
diffusion in the MOS source/drain regions is reported. This 
meshing scheme is suitable for use with the finite element 
method. However, the remeshing criteria used can be used for 
any numerical method which is used to solve the vacancy 
enhanced diffusion of dopants in Silicon. 

The initial mesh is constructed by using the concentra­
tion contours of the 2-D as implanted profile. Mesh spacing 
is chosen after making some 'a priori' estimates of the 
maximum diffusion which can occur during the specific anneal. 
As the source/drain profile evolves in time new mesh points 
are introduced by comparing the concentration ratio of 
adjacent nodes. This is an appropriate parameter as the 
diffusion co-efficient is proportional to concentration at 
most for the commonly used diffusion models. The remeshing 
test is only carried out along mesh lines which intersect the 
concentration contours and is hence a one dimensional test 
for a two dimensional diffusion. Application of the 
remeshing schemes to test problems of high concentration As 
diffusion indicate a halving of CPU time can be achieved when 
compared to a solution based entirely on a static mesh. 

Introduction 

With the continuing trend towards the shrinking of MOS 
device dimensions to achieve faster switching, accurate 
computer simulation of MOS devices has become an essential 
tool for device development. To accurately simulate device 
performance it is of utmost importance that the doping 
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profiles in the channel and source/drain regions are accu­
rately represented. While the doping profile in the channel 
region can be constructed from one dimensional simulation of 
the fabrication process the source/drain profiles require two 
dimensional simulation. Two of the key process steps 
involved in source/drain formation are implantation and the 
subsequent annealing. The simulation of the diffusion which 
occurs during the anneal stage involves the solution of the 
non-linear diffusion equation: 

\ l = V(D(C)VC) (1) 

where c is concentration, t is time and D(C) is the diffusion 
co-efficient as a function of concentration. The solution of 
(1) can in general only be carried out using numerical 
methods. 

Because the doping concentrations in the source/drain 
region vary typically over six or seven decades numerical 
simulation of (1) for dopant diffusion is extremely computer 
intensive and is to date not practical as a standard engi­
neering tool. Much effort has therefore been made recently 
to reduce solution times of the problem in two domains, space 
and time, by altering the spatial discretization (meshing) 
with the time discretization depending on the time evolution 
of the 2-D concentration profile [1,2]. The authors have 
also addressed this problem and report a quick and simple 
method to change the meshing with time when solving (1) using 
the finite element method. In part the efficiency of the 
remeshing scheme is due to the use of an 'a priori' initial 
mesh [3], and in part by using a remeshing criteria which is 
a direct measure of the non linearity of the diffusion 
co-efficient [4]. 

Numerical Formulation 

A brief outline of the finite element discretization of 
the diffusion eqn (1) is given below. For a triangular 
element a linear concentration variation in space over the 
element is assumed [5] 

Cei(x.y) =amqI1 +« nC n +apCp (2) 

Where Ce^ is the concentration over the i
tn element, Ĉ ,, Cn> 

Cp are the nodal concentrations of nodes m, n, p and am, a n 

and <fc are the basis functions associated with triangle m, n, 
p and given as: 

am = { (ypxn - xpyn) + (yp - yn)x + (xn - xp)y } /2A (3) 

where A is the area of the triangle, a n and a p are obtained 
by rotation of the subscripts in (3). 

o 
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Considering the time domain, the variation of C in going from 
one discrete time level t° to another t* is taken according 
to 

/ Cdt = [(1 - 0) C° +eCT)At (4) 

t° 
where A t = t 1 - t°, C° = C(t°) and (^(t 1). 

Now integrating (1) from t° to t*, 

AC = C 1 - C° =A t(l - 9-)V(D(C°)vC°)V+A t9V(D(C1)VC1) (5) 

Integrating (5) over the spatial domain 

/ nrd -Atev(D(ci)vc
1)]dn =/nrc° + At(i-e)V(D(c°)V(co>)] ^ 

(6) 
Applying the spatial discretization in (2) to (5), 

N 

i_1
s/Jfa]T[C]'1- AtervcDCC1)^]1^1] de 

e i 

; [a]T[C °] + A t ( l -e) fV(D(C°)V (C°)]T[C°]}^e (7) 
e. 

I 

where N is the number of elements and e^ the i^h element. 

Multiplying (7) through by [a] and applying Green's theorem 
one gets the weak formulation for_ the Galerkin weighted 
residual method, with the condition^Ck = 0 and ̂ CL = 0 along 
the boundries. !>x -&y 

^1 f[a][aUCl) + At0fVair0(C>7a]T[C11de 
ei 

/ [cx][a]T[C°] tO(l-0)[a ] [D(C) v<x]
T[C°]de (8) 

ei 
(8) can be expressed as a non-linear system of eqns. 

[K(C)][cJ] = [Qi] (9) 

i = 1,2.... z where z is the number of nodes in space . (9) 
is then solved using either a direct or iterative method. The 
non-linearity due to [K] being a function of C can be taken 
into account by having an inner iteration using a fixed point 
scheme. An alternative is to use a Newton like method to 
solve (9). It should be noted that the choice of 6>V2 in 
(8) can lead to an unconditionally stable solution of the 
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system of eqns (9) [6] when a constant time step A t is used. 
This is an interesting observation for the finite element 
discretization of the diffusion equation, noting the commonly 
used Crank-Nicolson criteria for the finite difference 
discretization leads to Q=^/2-

Quasi-Linearization and Remeshing 

When the differential co-efficient [Va][D(C)Va]
T is used 

for the L.H.S. of (8), the resulting co-efficient matrix 
[K(C)] in (9) is not symmetric. This in turn increases 
computer memory and processing time required to obtain a 
solution from (9). If for a single element the differential 
co-efficient is approximatod by, 

[Va][D(C)Va]T = D(Ce)[Va][Va]
T (10) 

with Ce = (Cm + Cn + Cp)/3 then [K(C)] will be symmetric. 
This quasi-linearisation will lead to a significant saving in 
computer time when the repeated solutions of (9) for inner 
iteration and discrete time levels are taken into account. 

When solving the problem of non-linear dopant diffusion 
in Si it is important that the spatial representation of the 
dopant profile is also capable of adequately representing the 
product of the concentration dependent diffusion co-efficient 
and derivatives of the concentration. To achieve adequate 
representation for the non-linear diffusion over the entire 
time period requires either a very fine meshing or a meshing 
which evolves a the dopant diffuses. Fig. la shows a finite 
element solution of 90KeV, SE15 n/cm2 dose As implant with a 
constant diffusivity. When the same implant is diffused at 
1000°C using a non-linear diffusion co-efficient on the same 
regular mesh as previously, oscilation starts to occur after 
i 5 mins of diffusion, Fig. lb. 

We have tried very fine time discretizations and still 
find that the oscillation sets in at to.5mins. This in turn 
suggests that it is the spatial discretization which is 
critical in simulating non-linear dopant diffusion. 

Recently an algorithm for changing the meshing with time 
when simulating non-linear dopant diffusion using the finite 
difference method has been suggested [1,2]. This algorithm 
is based on local fitting of third order polynomials to mesh 
points, calculating the second derivatives from the polyno­
mial and comparing them the numerical approximations to the 
second derivatives to ascertain the error in representation. 
This algorithm, which seems to work well for the specific 
finite difference formulation used has the drawback of being 
very time consuming as polynomials have to be fitted around 
each node in the x and y directions. The authors have 
developed a much simpler remeshing criteria which is suitable 
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Figure 1(a) 
Time evolution of a 90KeV 5E15 n/cm2 (5E7n/w?) As implant 
simulated with a constant diffusivity of lE-5um2/min for 20 
mins. 
Figure 1(b) 
Spatial oscilations occuring after K 5 mins of diffusion when 
using a non-linear diffusivity for the sample implant. 
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for the quasi-linear finite element formulation. This 
remeshing criteria is based on introducing a node when the 
ratio of concentration exceeds a certain value , 

ci n 
C-Z-I > r (Ha) 

and removing a node when 

(lib) 

with C^ > Cj[_i P can be related to the specific diffusion 
being simulated, 

T max A 

^nax
 is tne maximum diffusivity estimated from the initial 

implant profile and is a function of doping element and 
anneal temperature. A t is the time step. K is an empirical 
constant which for the quasilinear formulation has been 
determined as 35 x 10-3um. K is akin to the empirically 
determined minimum allowable error of the second derivatives 
in the other remeshing scheme [1] described above. 

Fig. 2 shows results from the application of the 
remeshing criteria in (11) to a 1000°C anneal of a 5E15u/cm2, 
75Kev As implant. Fig. 2a shows the initial implant with a 
uniform node distribution. Fig. 2b shows the result after 
simulating the diffusion for 20 mins at lOOOOC. The mesh used 
was in the form of a single strip of triangular elements with 
all boundaries being chosen as reflective. This form of mesh 
proved useful in evaluating the remeshing criteria for a 2-D 
problem with diffusion limited to one direction. Fig. 2b 
shows the nodes being placed in parts of the profile where 
concentration changes rapidly. 

This is not surprising since the test used (11) automat­
ically builds in a test for rapidly changing regions of con­
centration. However, the major advantage of using (11) can 
be understood when the variation of diffusivity with concen­
tration is considered. Fig. 3 shows the diffusivity of As at 
1000°C including the physical effects of vacancy enhancement, 
electric field enhancement and clustering. Fig. 3 is 
obtained from the D(Ce) values for each element in Fig. 2b. 
Also shown on Fig. 3 are D(C) values from the nodal concen­
trations of Fig. 2b and the projection of these nodes onto 
the concentration axis. 

6 
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Figure 2(a) 
Initial concentration and nodal distribution for a 90KeV, 
5E15n/cm2 (5E7n/wP) As implant 
Figure 2(b) 
Concentration and nodal distribution after 1000°C, 20 min 
anneal. (The solid symbols are experimental measurements with 
SIMS) 

LDQIOD(C) 

B a 
Figure 3 LOGIO C 

Diffusivity vs concentration of As at 1000°C plotted at nodal 
positions of the profile in Figure 2(b) 
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This clearly shows that most nodes are placed in regions 
where the diffusivity rises rapidly as a function of concen­
tration. This rise in diffusivity is due to the vacancy 
enhancement and is proportional to C in the commonly used 
model [7]. Therefore the remeshing scheme (11) is especially 
suited for the quasi-linear finite element formulation as it 
tests not only for steep gradients in the concentration 
profile but also continuity of elemental diffusivity D(Ce) 
with concentration. Fig. 4 shows a corresponding solution 
for a B diffusion at 1000°C. 
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Figure 4 *iva 

Profile of a SETn/um2, 20KeV B implant after annealing at 
1000OC for 20 mins. 

Simulation of 2-D Diffusion in Source/Drains 

The remeshing scheme outlined above has been incorpo­
rated into a two dimensional source/drain diffusion simulator 
[3], SPS-2D. This simulator has an automatic meshing scheme 
which is a function of processing parameters and dopant type. 
A typical mesh generated by SPS-2D for a SxloiSn/cm2, 120Kev 
As implant which is to be annealed at 950°C for 20 mins is 
shown in Fig. 5a. The mesh of Fig. 5a is constructed by 
placing nodes along lines which are approximately perpendicu­
lar to the initial implant contours for regions beyond the 
projected range into the bulk silicon. The nodal spacing of 
the static mesh is chosen after making some *a priori' 
estimates so as to have more nodes in the area where strong 
non-linear diffusion occurs. Full details of this meshing 
scheme are given in [3]. 

8 
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Figure 5(a) 
Initial mesh generated by SPS-2D for a 5E7n. ,/um2, 120 KeV As 
implant to be annealed at 950°C for 20 mins. 
Figure 5(b) 
2-D profile after anneal, crosses show nodal placement. 
Concentration in n/um3 
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The 2-D profile after the 950°C 20 min diffusion is 
shown in Fig. 5b, the crosses are the node placings used. The 
static mesh used for the test problem had 1140 nodes, 2930 
elements and with a time step of 30 sees, and the diffusion 
took 62 mins CPU on a Prime 750 (equivalent to VAX 780) to 
simulate. 

The same diffusion has been simulated using the re-
meshing scheme on an initial mesh generated in the same 
manner as previously but with a reduced number of nodes 
placed I with equispacing along the contour intersecting lines. 
The remeshing test was carried out only along the lines in­
tersecting the contours. This reduced 1-D test was considered 
adequate for the specific contour meshing scheme used as the 
diffusion proceeds predominantly in a direction parallel to 
these intersecting lines. Fig. 6a shows the final mesh 
generated using the meshing scheme and Fig. 6b shows the 
solution for the 120Kev, SxlOiSn/cm2, 950°C, 20 min test 
problem. 

The initial mesh for the test problem had 580 nodes and 
1136 elements. At the end of the solution the number of 
nodes and elements had been increased to 750 and 1435 
respectively. No node removal according to (10b) was 
performed for this problem. This solution required 35 mins 
CPU as opposed to 62 mins using the static mesh. The time 
step used was 30 sees for both methods of solution. Compar­
ing the two solution methods it is clearly seen that use of a 
simple remeshing scheme with initial 'a priori' meshing leads 
to a significant reduction in solution time. 

Conclusions 

A remeshing scheme which takes into account the varia­
tion of diffusivity with concentration occuring and the rapid 
spatial variation of concentration when simulating dopant 
diffusion in silicon is presented. This remeshing scheme is 
especially suited for a finite element formulation with a 
constant diffusivity for each element approximation. The 
remeshing scheme has been implemented for simulating two 
dimensional diffusion of MOS source/drain regions and 
resulted in a 40-50% reduction in CPU times compared with 
solution on a static mesh. 

10 
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Figure 6(a) 
Final mesh using remeshing for the As anneal (950°C, 20 
mins). 
Figure 6(b) 
2-D concentration profile obtained with remeshing scheme. All 
concentration in n/um^ 



571 

References 

1. W. Jungling, P. Pichler, S. Selberherr, E. Guerrero and 
H. Potze, 'Spatial and Transient Grids for Process and 
Device Simulators', p.320, Proc. NASECODE IV, Boole 
Press, Dublin, 1985. 

2. P. Pichler, W. Jungling, S. Selberherr, E. Guerrero and 
H. Potzl, 'Simulation of Critical IC Fabrication Steps', 
Trans. IEEE, ED, p.1940, Oct. 1985. 

3. G. Amaratunga, R. Bhatia and S. Nageswaran, 'The Fast 
Simulation of MOS Source/Drain Diffusion Using an 
A-Priori Meshing and a Frontal Solution Scheme', p.134, 
Proc. NASECODE IV, Boole Press, Dublin 1985. 

4. R. Ismail and G. Amaratunga, 'A Simple Remeshing Criteria 
for Finite Element Based Simulation of Dopant Diffusion 
in Si', Proc. IEE Colloq. on Device and Process 
Modelling, IEE, London, Oct. 1985. 

5. 0. C. Zienkiewicz, 'The Finite Element Method', McGraw 
Hill, 1977. 

6. P. A. Vermeer and A. Verruijt, 'An Accuracy Condition for 
Consolidation by Finite Elements', p.l, Num. and Analyt. 
Meth. in Geomech., Vol.5(1), 1981. 

7. R. B. Fair, 'Concentration Profiles of Diffused Dopants 
in Si', in 'Impurity Doping Processes In Silicon', ed. F. 
F. Y. Y. Wang, North-Holland, 1981. 


