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ABSTRACT: We present a two-dimensional model of ion 
implantation which accounts for position dependent lateral 
moments. The lateral standard deviation and the lateral 
kurtosis as a function of depth have been calculated by 
two-dimensional Monte Carlo simulations for boron, phosphorus, 
arsenic and antimony in silicon for energies in the range of 
10 to 300 keV. The lateral moments as a function of depth and 
energy as well as the vertical moments as a function of energy 
have been fitted by simple formulae. We specify a 
modification of the Gaussian distribution function in order to 
include the lateral kurtosis with an analytical expression. 

1. INTRODUCTICN 

For the purpose of describing ion implantation profiles, 
methods based on distribution functions together with spatial 
moments are now being used for more than 20 years. The 
principle of these methods is to assume a functional type for 
the distribution function and to calculate its free parameters 
from its spatial mcments. These moments may be obtained 
either by experiment or by theory. For a long time only the 
first two mcments, i.e. the mean projected range and the 
projected range straggling (the standard deviation), could be 
specified [1], and so the only reasonable distribution 
function was the Gaussian function. Although this oldest 
model is still freqently used for sake of simplicity or for 
lack of higher mcments, it is well established today, that for 
a realistic description of one-dimensional profiles 4 moments 
must be taken into account [2]. For this purpose the Pearson 
IV distribution is commonly used, which was introduced By 
Hofker in 1975 [3]. 

The first model including lateral spread was presented by 
Furukawa in 1972 [4]. It is based > on the statistical 
distribution function for one ion, i.e. the response to a 
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punctiform beam. By a convolution of this distribution 
function he obtained the distribution under an infinitely 
steep and infinitely high mask edge. Later this model was 
extended to the case of arbitrarily shaped mask edges by Runge 
[5], and further models were developed to account for 
different stopping powers of mask and bulk material [2],[6]. 

In this paper we shall give a sophisticated model for the 
statistical distribution function of one ion. We denote it 
f(z,x), with z the vertical coordinate (perpendicular to the 
surface) and x the lateral coordinate. z=x=0 is the point of 
entrance of the ion. Furukawa and still Runge used a 
two-dimensional Gaussian function for f(z,x), which may be 
written f(z,x)=gauss(z)-gauss(x). This approach has been 
refined by Ryssel [7] to f(z,x)=fvert(z)-gauss(x), with 
fvert(z) a proper one-dimensional distribution function. 
Using a Pearson IV function, today's~standard model reads 

f(z,x) = pears(z)-gauss(x) . (D 

The major limitation of this description is that it 
ignores any correlation between the vertical (z) and the 
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Fig.l: Depth dependence of the 
lateral standard deviation 
for As in Si (100 keV) 
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lateral (x) coordinate, or to say it in more simple words, 
that the lateral standard deviation is assumed to be 
independent of the depth. Furthermore, assuming a Gaussian 
distribution, no higher moments are taken into account. Our 
Monte Carlo simulations indicate that these assumptions are 
not true. In Fig.l and Fig.2 the lateral standard deviation 
and the lateral kurtosis are shown, respectively, as a 
function of depth for the case of a 100 keV implantation of 
arsenic into silicon (dashed lines). As a reference the 
vertical distribution function (histogram) is also depicted. 

The impact on the distribution under a vertical mask edge 
is shown in Fig.3 and Fig.4. The standard model (Fig.3) is 
compared to the results of our Monte Carlo simulation (Fig.4) 
of a 200 keV boron ibnplantation into silicon. This example 
was chosen because boron has a very large lateral standard 
deviation. One can see that the classical distribution 
extends too much below the mask at the maximum concentration 
of the vertical profile and not enough at regions closer to 
the surface. The reason for this is that the lateral standard 
deviation decreases towards the bulk (see Fig.7; this is in 
contrast to the arsenic implantation of Fig.l). 
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The statistical distribution function for one ion may 
generally be written 

f(z,x) = fvert(z)-flat(x,z) • <2> 

flat(x,z) is seen here as a function of x with parameters that 
depend on the lateral moments, which in turn are functions of 
the depth (z). In Chapter 4 we shall specify fiat(x,z) as a 
function of lateral standard deviation vx and lateral kurtosis 
Px- In Chapter 3 the functions <rx(z,E) and Px(z,E) will be 
given (E denoting the implantation energy) for the case of 
boron, phosphorus, arsenic and antimony implantations into 
silicon in the range of 10 to 300 keV. These were obtained by 
fitting the results of our Monte Carlo simulations. Also 
enclosed in Chapter 3 are fitting formulae for the vertical 
moments as a function of energy. Special features of our 
Monte Carlo code are briefly outlined in Chapter 2. 

2. DETAILS OF THE MCNTE CARLO SIMULATION 

As with other Monte Carlo codes for the simulation of ion 
implantation, our code evaluates a large number of ion 
trajectories in an amorphous target. After entering the 
solid, the ions undergo collisions with target atoms (nuclei), 
which cause slowing down and deflection. Additional slewing 
down is performed by interaction with target electrons. We 
use the Moliere potential to evaluate nuclear collisions and 
the Lindhard-Scharff formula to calculate electronic energy 
loss. These physical fundamentals are identical to those of 
Biersack's program "TRIM" and are reported in ref. [8]. The 
correction factor of the electronic stopping formula is chosen 
1.5 for boron, 1.3 for phosphorus and 1 else. Recently this 
approach to the basic physics has been improved by Ziegler, 
Biersack and Littmark [9] (also reported in [2]). 

Our code has some special features in order to increase 
computer time efficiency. First, the most time consuming 
part, the evaluation of nuclear collisions, is replaced by 
linear interpolation in two precomputed tables, which provide 
the scattering angle and the nuclear energy loss, 
respectively, as a function of impact parameter and energy. 
Secondly, we use a special technique to calculate profiles for 
many different implantation energies simultaneously. And 
finally we make use of a relationship between the k-th lateral 
moment m>(x)=l/tt«£cik and the k-th radial moment 
mi<(r)=l/to«£r;i_

1<, ri^Xi^+yi2)1/^, to reduce statistical 
fluctuations. 

mk<x) =l.|......i<=l.ink(r) (3) 

Eq.3 is valid in the case of cylindrical symmetry. 
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3. FISTING OF THE SPATIAL MOMENTS 

Lz(E) 

We need the following spatial moments as input data for 
our analytical model: 

- mean projected range Rp(E) 
- vertical standard deviation <r2(E) 
- vertical skewness Y2 

- vertical kurtosis p z, 
- lateral standard deviation ffx(z,E) 
- lateral kurtosis Px(z,E) 
We have calculated these quantities by means of Monte Carlo 
method for 30 energies between 10 keV and 300 keV and in the 
case of lateral moments for approximately 40 intervalls of 
depth. To obtain small statistical fluctuations the 
simulation has been performed with 100,000 (boron) to 200,000 
(antimony) ions. The results were then fitted by the below 
specified formulae. 
3.1 Vertical moments 

The vertical moments read 

Rp(E) = ai»Ea2 + a3 

«r2(E) = ai«E
a2 + 83 

rz(E) = 
al 
a2+E + a3 

Pz ( E ) = afb+a3 + a 4 * E 

(4a) 

(4b) 

(4c) 

(4d) 

The units used for the implantation energy E are keV, for all 
lengths (Rp, <rz) ym are used. The parameters are listed in 
Table 1 to Table 4. 

a l 
a2 
a3 

MSE 

boron 

0.00969 
0.767 
-0.01815 

1.41 % 

Table 1 

Projected Range Rp 

phosphorus 

0.001555 
0.958 
0.000828 

0.57 % 

arsenic 

0.000688 
0.983 
0.003962 

0.59 % 

antimony 

0.000668 
0.921 
0.005072 

0.57 % 
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Table 2 

Vertical Standard Deviation <rz 

boron 

0.0521 
0.216 

-0.0684 

1.92 % 

phosphorus 

0.002242 
0.659 

-0.003435 

1.73 % 

arsenic 

0.000402 
0.874 
0.000582 

0.30 % 

antimony 

0.000241 
0.884 
0.000923 

0.35 % 

Table 3 

Vertical Skewness t z 

boron phosphorus arsenic antimony 

*L 312.7 
a2 122.2 
a3 -2.404 

MSE 0.0235 

336.2 
199.3 
-1.386 

0.0093 

339.8 
342.0 
-0.5051 

0.0047 

Table 4 

Vertical Kurtosis P2 

195.1 
339.7 
-0.0910 

0.0068 

boron phosphorus arsenic 

al 
a2 
a3 
a4 
MSE 

0. 
1. 
2.212 
0.0195 

1.66 % 

54.45 
55.74 
1.865 
0.00482 

0.39 % 

38.73 
61.70 
2.559 
0. 

0.60 % 

antimony 

47.33 
81.17 
2.692 
0. 

0.58 % 
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MSE denotes the mean square error. Note that the fitting 
formulae are valid only in the range of 10 to 300 keV. We 
have tried to produce formulae that behave reasonable outside 
this range. Nevertheless Bp and <rz do not approach 0 for 
implantation energy 0. Avoiding this would have resulted 
either in a considerable increase of the fitting error or in a 
more complex formula. So, if one insists on using our data 
for implantation energies less than 10 keV, one should rather 
interpolate Rp and cz linearly between 0 keV and 10 keV. 

3.2 Lateral moments 

Fitting two dimensional tables requires more complex 
formulae. We use: 

ax(z,E) = <rz(E)-{^--ln[exp(ai-P1)+exp(a1-P2)]} 

Px(z,E) = |~-ln[exp(a1«P1)+exp(ai-P2)] 

with 

pl = a2'Z**E + 33'z' + a4*E + as 

P2 = a6*z''E + a7*z' + ag-E + ag 

and z' the reduced depth 

z' = z/Rp(E) . 

The parameters a^ - ag are listed in Table 5 and Table 6. 

(5a) 

(5b) 

(6a) 

(6b) 

(6c) 

al 
a2 
a3 
a4 
a5 
36 
a7 
a8 
a9 

Table 5 

Lateral Standard Deviation «FX 

boron 

-1.443 
-0.005637 
1.558 
0.003511 
1.189 
-0.013185 
-0.2271 
0.014883 
1.422 

phosphorus 

-0.9488 
0.002793 
1.205 

-0.001370 
1.043 

-0.003208 
-0.1201 
0.003528 
1.320 

arsenic 

-6.724 
0.000582 
0.5117 

-0.000649 
0.3709 

-0.000512 
0.1299 
0.000375 
0.7277 

antimony 

-13.884 
0.000481 
0.3685 

-0.001024 
0.4838 

-0.000110 
0.1357 
-0.000425 
0.7529 
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al 
a2 
a3 
a4 
a5 
ae 
a7 
a8 
a9 

boron 

0.5278 
0.002498 
-0.9765 
-0.000061 
2.538 
0.02713 
0.5976 

-0.03790 
0.5911 

Table 6 

Lateral Kurtosis P x 

phosphorus 

0.03496 
-0.2996 
-60.76 

0.008940 
-53.66 
-0.001406 
0.2740 
0.001470 
2.504 

arsenic 

1.134 
-0.01340 
-2.927 
0.007873 
4.493 

-0.000965 
-0.06646 
0.001077 
3.224 

antimony 

6.462 
-0.005668 
-0.4474 
0.004384 
3.345 

-0.000613 
-0.11157 
0.000901 
3.246 

It is not reasonable to give a fitting error here because one 
could hardly decide if the error is due to fluctuations of the 
Monte Carlo results or to bad approximation. Instead, we have 
plotted the fitted and the unfitted moments in a three-
dimensional representation. An example is shown in Fig.7 and 
Fig.8. 

Fig.7: <rx(z,E) for boron (Monte-Carlo) 
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Fig .8 : <rx(z,E) for boron (fitted) 

4 . ANALYTICAL MODEL 

4.1 Vertical distribution function 

We do not intend to present a new vertical distribution 
function here, but we want to point out a problem with the 
Pearson IV distribution, which arises together with moments 
derived from Monte Carlo calculations (it has already been 
encountered by Peterson et al. [10]): Skewness and kurtosis 
violate an inequality that restricts the applicability of the 
Pearson IV distribution. However, the Pearson IV function 
fits well experimental profiles in many cases [2]. The reason 
for this discrepancy is that real implantations are performed 
into crystalline targets where always a certain amount of 
channeling occurs. 

There are various possibilities to overcome this problem. 
First, one can pragmatically modify the moments to meet the 
inequality between skewness and kurtosis (this has been done 
in Fig.3 to Fig.6). In most cases a slight modification is 
sufficient, so this will not cause a very great mistake. 
Then, another way is to perform a one-dimensional Monte Carlo 
simulation to obtain the vertical distribution function 
directly. This is in many cases feasible, because computer 
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time efficiency of Monte Carlo programs has increased 
considerably. The last possibility is to use an experimental 
profile for the vertical distribution. However, this method 
should be handled carefully, because if there is too much 
channeling in the profile, our data for the lateral standard 
deviation could possibly not apply. 

4.2 Lateral distribution function 

We look for a function f(x) with the following 
characteristics: 

~ symmetry 

- positivity 
- only one maximum 
- smoothness 
- its parameters can be calculated from standard deviation <r 
and kurtosis p. For that purpose the moments must exist to 
the forth order. 

The function f(x) has to meet the equations 

oo 
1 = / f(x) dx (7a) 

-oo 
oo 

<r2 = / x2.f (X) dx (7b) 
-00 

oo 
p.<r4 = /x4.f(X) dx . (7c) 

-co 

Thus we need (at least) 3 free parameters. The Gaussian 
function 

f(x) = a-exp(-(bx)2) (8) 

has only two parameters, which are determined by Eg.7a and 
Eg.7b: 

a = Tib m 

b = Wi m 

The kurtosis equals 3 in any case. In order to obtain one 
additional parameter, we replace the power 2 in the Gaussian 
function (8) by an arbitrary power p: 

f (x) = a«exp(-|bx|P) (10) 
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Introducing (10) into (7), we need the integral [11] 

oo 
/ xn. exp(- |bx|P) dx = P(£ti) / (p-bn+1) . (11) 

P denotes the Gamma function. P can be expressed, using Eg.7: 

P ( ^ 
We need the inverse function of (12), what unfortunately 
cannot be done analytically. So we solved the problem for 
very large p: 

(p)Q = 0.290576-yp-1.8 (13a) 

and for very small p: 

^cxT 0.687042-In(-^) (13b) 

The actual value of - is obtained by interpolation 

rC-#o+^-#co (13c) 

with 

c = 0.795833 -exp[-l. 94544 -(p-1.8)] + ._,. 
+ 0.204167-exp[-0.272172• (p-1.8)] . llJa; 

(13d) was fitted to 100 (P,p)-values in the range 1.8<P<6. 
The mean square error is about 1 %, but it is centered at very 
small P, so the error in the relevant range of P is less (e.g. 
P=3 leads to p=1.999 instead of 2, which is correlated by 
Eg.12 to p=3.001). 

With p from (13c) one obtains easily 

b = J- i r& / r<& (i4) 

ano 

a = (b-p) / (2-P(i)) . (15) 

Eg. 10 is shown in Fig.9 for various values of P. For P=6 
(p=l) the derivation of f (x) at x=0 is discontinuous and for 
p>6 it becomes infinite. However, in the case of ion 
implantation lateral kurtoses greater than 6 do practically 
not appear. 
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Fig.9: Eg.10 for various values of P 

4.3 Distribution under a mask edge 

Seeing <r and P as functions of z (ax(z,E), Px(z,E)), f(x) 
of the previous section may be called fiat(x,z). 
Multiplication with the vertical distribution function 
fvert(z) yields the two-dimensional distribution function for 
one ion (cf. Eg.2). This distribution function can then be 
used in a convolution integral to calculate the distribution 
function under a mask edge [4], [5], [6]. We do not discuss 
the convolution integral, but we note that it does not treat 
those ions correctly which leave the mask into the air and 
reenter the target. 

The results of our calculations for an infinitely steep 
mask edge are shown in Fig.5 and Fig.6. In both cases the 
vertical distribution function has been assumed a Pearson IV 
function. The vertical kurtosis has been modified as 
mentioned in Section 4.1. In Fig.5 the lateral kurtosis has 
been assumed p=3, so we have a Gaussian distribution 
laterally, bub with a depth dependend standard deviation. In 
Fig.6 we also account for the lateral kurtosis. 
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