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Summary 

Over the past few years many programs have appeared simulating 
the behaviour of semiconductor devices [1,2,3,4]. In general each 
program has adopted its own peculiar strategy for solving the three 
partial differential equations governing the system. Initialisations of 
the numerical process have also been diverse, not to mention the 
variety of the linearisations and the linear algebra employed. This 
richness in techniques has led to an art, if not alchemy, in the 
solution of semiconductor problems. 

In this paper is described yet another simulation package for 
modelling semiconductor devices, using yet another solution 
procedure adding to the many already available. However, this 
system has one major software engineering difference; its' own 
internal virtual machine with an application specific instruction set. 
This will enable those who wish to engage in algorithmic alchemy 
to do so within a relatively stable enviroment. 

1 Introduction 

ESCAPADE, a European Semiconductor Algorithms Package for the 
Analysis of DEvices has been designed and written as part of a 
pre-ESPRIT research program in device simulation. The main goal 
of the project was to design and implement efficient numerical 
solutions for silicon devices. This has clearly led to research into 
basic discretisation techniques, physical models, linearisation and 
linear algebra, to name a few areas. Each partner has taken part 
in the development and testing of these techniques in their. own 
in-house computer programs. However, during the later part of the 
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project it was agreed that a software system should be written 
capable of implementing and testing the many new algorithmic 
ideas coming to light. This has resulted in the design and 
implementation of ESCAPADE-I. 

Currently the majority of simulators are two dimensional but in 
years to come extensions into three dimensional analysis would be 
desirable. Although this first version of ESCAPADE performs only 
a two dimensional analysis, it has been designed with three 
dimensional problems in mind. 

2 The Structure of ESCAPADE 

In its design ESCAPADE has tried to provide two basic 
environments: one for the user who wishes to analyse a particular 
device and the second for the numerical analyst researching into 
solution algorithms and strategies. In its initial form ESCAPADE is 
a background (batch) program although ESCAPADE-II is intended 
to have both a fully interactive mode as well as a background 
mode. 

Control Program 

Data 
Preparation Compiler Execu t i on 

Sys tern 

Figure 1 : Program Structure 

The basic structure of ESCAPADE is shown in Figure 1. The 
user's input data defines the problem to be solved and once the 
ANALYSE command (described below) is reached, the specified 
solution sequence is compiled and then executed. The solution 
sequence is provided via an external file and it is through this 
mechanism ESCAPADE acquires much of its flexibility. 

2.1 The User Interface of ESCAPADE 

The interface to the program for the first group of users is the 
traditional one; a problem oriented command language allowing the 
description of a device geometry, impurity profiles and physical 
models with the initiation of an analysis for specified biases. 
Consequently ESCAPADE has a number of data sections to enable 
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this problem description. These include: 

problem identification 

program option selection 

the description in the device geometry 

physical, model and material definitions 

impurity profile specifications 

specification of contact potentials 

mesh control instructions 

output control 

selection of type of analysis 

These data sections contain a large number of subcommands and 
options which are described in the User's Manual [5]. Throughout 
the design of the user interface simplicity and flexibility have 
been considered very important. It is thought that the current 
structure in ESCAPADE exhibits these qualities. Where necessary 
some of these commands will be described. 

2.2 The Solver Sequence Machine 

The second purpose of ESCAPADE is to provide a software 
enviroment for those who are concerned with algorithmic 
development. This enviroment has been provided in terms of 
ESCAPADE'S own vitrnal machine, the Solver Sequence Machine 
(SSM). The main characteristics of the SSM are: 

* A high level programming language with control structures 
and application specific instructions. 

* A compiler and execution system. 

The basic instruction set of the SSM comprise major algorithmic 
steps such as Solve Poisson's Equation, or Solve a fully coupled 
system of equations, and as one would expect there are elementary 
instructions to control the flow of execution within the machine, 
to manipulate the internal registers of the machine, and to make 
logical and arithmetic tests. 

This interface to ESCAPADE, through the SSM, is intended for use 
only by specialists in semiconductor device modelling who wish to 
use a non-standard solution sequence. They have available to them 
a simple structure language to control all the elements of a 
solution sequence. For example mesh generation and adaption, 
physical model selection and coupled or uncoupled equation 
solutions. 

An example of the SSM language is shown in Figure 2. The 
extract shows the formation of an uncoupled solution sequence. 

* TITLE 

* OPTIONS 

* GEOMETRY -

* PHYSICAL -

* DOPING 

* BIAS 

* MESH 

* OUTPUT 

* ANALYSE 
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Two carrier equations are used with the Poisson equation. 

ANALYSE FROM * 
$ 
$ Example SSM algorithm 
$ 

INITIALISE 
BIAS 
FIX_N 
FIX_P 
PUT_INS 
SLV_POISS 
FREE_N 
FREE_P 
PUT_SEM 
SLV_INN 
SLV_INP 
UPD_VARS 
SLVJPOISS 

$ 
$ Loops to balance the electron and hole concctrations 

sequence 

initialise the SSM Machine 
select next bias point 
fix n-quasi fermi potentials 
fix p-quasi fermi potentials 
put bias on insulator contacts 
solve Poisson's equation 
free n-quasi fermi potentials 
free p-quasi fermi potentials 
put bias on semiconductor contacts 
solve modified n-continuity equation 
solve modified p-continuity equation 
update of all dependent variables 
resolve Poisson's equation 

CNVGD_OPT 4 l.D-6 -
REPEAT 

SLV_N 
SLV_P 

UNTIL CONVERGED -

select convergence test and tolerance 
start of repeat block 
solve n-continuity equation 
solve p-continuity equation 
test convergence 

Gummel loops for low injection problems 

CNVGD_OPT 4 1.0D-5 
RECOMB 1 
REPEAT 

CAL_REC 
SLV_N 
SLV_P 
SLV_POISS 

UNTIL CNVGD 
OUTPUT 

STOP 

select convergence test and tolerance 
select SRH recombination 
start of repeat block 
calculate recombination 
solve n-continuity equation 
solve p-continuity equation 
solve Poisson's equation 
test convergence 
produce output file 

- SSM sequence completed 

Figure 2 : SSM Instructions 

The flow of an algorithm can be controlled by a number of 
simple structures: a REPEAT-UNTIL, a DO-NEXT, and a 
IF-THEN-ELSE. The basic structure of these is illustrated in 
Figure 2. The SSM Machine also contains a number of registers 
which can be assigned by the program and used by the SSM 
instructions. Details on the use of these is given in the User's 
Manual [5], 
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3 The Basic Equations 

The electrical behaviour of semiconductor devices is governed by 
Poisson's equation 

e^2tf = -q [p - n + N+ .- Nf] (1) 

and the continuity equations for electrons and holes 

| H = + I V . J - U (2 ) 
d t q n n v ' 

£ £ = . I ^ . J - U (3 ) 
St q * p p ^ 

where ^ is the electric potential and n and p are the electron and 
hole densities. From a special case of Fermi-Dirac statistics, J n and 
Jp in (2) and (3) can be written as functions of the electrostatic 
potential and the electron and hole concentrations, n and p. 

Jn - q/*nEn + Q'V7 1 1 (4 ) 

Jp = q/*pEp " QDp^P (5 ) 

where nn and / i p are the electron and hole mobilities and D n and 
Dp are the electron and hole diffusivities. If the effects of 
band-gap narrowing are assumed small, and assuming Boltzmann 
carrier statistics, the electric fields due to the electron and hole 
densities can be written as 

E n = E p - E = " ^ (6 ) 

U n and Up in (2) and (3) represent the net rates of recombination 
and generation of electrons and holes. N a and N^ are the ionized 
impurity concentrations. 

4 Mobility Models 

The carrier mobilities nn and Up account for scattering mechanisms 
in the transport equations. ESCAPADE currently only contains two 
simple models. The simplest alternative is to choose constant 
mobilities for holes and electrons throughout the device. The effect 
of impurity scattering is also included by using local low-field 
mobilities which are characterised by the total impurity 
concentrations [6,7], 

The most complex mobility model currently available in ESCAPADE 
is a field-dependent model. The model used is [6] 
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/ t (E) = 
1 * I4*! l" 

1/0 

Mo (7> 

where vs is the saturation velocity, |3 is a constant (usually 
1 or 2) and fi0 is the low-field mobility. For Si [8] the saturation 
velocity is given by 

2 . 4 x l 0 7 

vs(T) = T V T (8) 
s 1 + °-8 [*ro] 

5 Recombination and Generation 

Currently only the basic Shockely-Rcad-Hall and Auger 
recombination models have been implemented in ESCAPADE [9]. 
These are given by the following expressions 

n+n . I + T p + n . i[ I e J n [ H I C J 

2 
pn - n . 

USRH - - r - i ^> 
T 

P 

where r p and r n are the hole and electron lifetimes which may 
be concentration dependent, and 

UAUG = ( n i c " n P H c " - n + c P - P ) ( 1 0 ) 

where C n and CP are specified constants dependent on the physics 
of the semiconductor material. 

In these equations n j c is the effective intrinsic concentration and 
is taken to be a function of the impurity doping [10]. The spatial 
variation of nj e to accommodate band-gap narrowing effects will 
also modify the electric field terms in the transport equations. The 
constants n j c can include this field dependence. Hence E n and E p 

become 

E n 

E 
P 

kT 
= - T7 " 

V - " ln " i c ] <12> 

6 Numerical Methods 

ESCAPADE-I sets out to solve the steady state form to the 
semiconductor equations. The basic technique used to approximate 
the equations is the control region approximation as proposed by 
McCartin [11,12,13]. The major reasons for this choice are those 
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given in [11]. The approximation should: 

1) be applicable to arbitrary geometries 

2) be conservative 

3) adequately treat the continuity equations 

4) allow adaptive development of the discretisation. 

The control region approximation provides for all of these 
requirements and is capable of efficient implementation in 
software. The starting point of the control region approximation is 
the conservative forms of the three governing equations. 

f e | £ ds - JJ" (Nj-Na+n-p) dA = 0 (13) 
S " A 

| ( D n | ? - « n n f £ ) ds - JJ Rn dA - 0 (14) 
J S A 

IS<DP I f + "PP £ > dS • l I A
R P d A = ° (15) 

The control region approximation is applicable to many general 
conservation laws and consists of performing discrete flux balances 
over control region boundaries. 

These control regions must clearly tesscllatc the whole of the 
solution domain and in the light of the computational requirements, 
be easily computable. Although the control regions could be of any 
shape, more generally they would be polygonal and surround grid 
points. 

(a) A Typical Control Region : (b) An Overlapping Tile 
Figure 3 
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The control regions currently used in ESCAPADE are formed by 
using the Delaunay triangulation of the grid points [14]. The 
control regions arc constructed by using the perpendicular bisectors 
of the edges of the Delaunay triangularisation. The regions formed 
arc the Dirichlet regions [15] of the space and are dual to the 
Delaunay triangulation. 

To illustrate the control region approximation it will be applied to 
the Poisson equation for the electrostatic scalar potential. The 
detail of this approximation can be found in [11] and [12], The 
treatment here differs only in the approximation of the charge 
terms. In order to approximate 

ev2f = -qfp - n + N* - N^l (16) 

the equation is recast in its divergence form, as in (13). A is any 
simply-connected region and s(.v) is a coordinate in the direction 
normal to the boundary of A (S). The first integral is 
approximated about a point p0, using straightforward finite 
differences for., the derivative of ^, along each edge of the control 
region. This leads to the expression 

m 

I •If'" -5«i[*Lii iT-i <"> 
b i = l 

where q is the value of permittivity on the edge, TJ and hj arc 
characteristic lengths of the edge. r\ is the length of the edge and 
hj is the length of the perpendicular bisector of the z'th edge. 
These lengths are described in Figure 3a. 

In the control region approximation the charge terms are in 
general assumed to be constant over the whole Dirichlet tile. This 
is similar to the technique of nodal lumping used in the finite 
clement and finite difference methods. The major difference is the 
area associated with the node and the types of permissible 
triangles. However, if the impurity distributions are step functions 
the charge approximation is modified. The charge term is broken 
into two parts 

JJ p dA - JJ (p-n) dA + JJ (N d -N a ) dA (18) 

The first integral is approximated by 

JJ (p-n) dA = [ p ( X i , y i ) - n ( x i , y i ) ] . A i (19) 

where (xj.yj) are the coordinates of the node enclosed by A and 
Aj is the area of this region. In the case of a step function 
impurity profile the second integral is approximated by 
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m 

ff (Nd-Na) dA « ]> (Nj- N J ) . A * (20) 
A i = l 

where NJJ and Njjj are the values of N^ and N a respectively on 
the kth part of the tile. The area of the fcth part of the tile is 
denoted by A}\ Over each subarea the impurity profile is assumed 
to be constant and special care is taken when subareas overlap the 
boundaries of underlying triangular mesh (as shown in Figure 3b) 

The linearisation of the final equation formed from these 
approximations is 

m 

- S - ' p n T r H ' i + ( n o - p o - N o ) A » 
i = l 

where n£, p£ and i/<£ denote the present estimates of these 
variables, and 5 is the difference between i/-k and the exact 
solution \p. 

In most device simulators special discretisation schemes arc used 
for the carrier continuity equations. In general the scheme proposed 
by Scharfettcr and Gummel [16] is most often used. It is possible 
to extend the control region approximation to the continuity 
equations and introduce the Scharfetter-Gummel quite naturally. 
This is described in [11] and [12] in detail and will not be 
repeated here. 

7 Mesh Generation 

ESCAPADE is equipped to generate meshes for irregular, polygonal 
device geometry definitions. Given a geometric description of an 
arbitrary device, ESCAPADE will automatically generate a coarse 
mesh of triangles within the bounds of the device. This fully 
automatic mesh generation is sufficient to produce discretisations of 
a device based entirely on its geometric definition. 

However for many device structures it is essential that the mesh 
be fine in certain regions. The refinement of a discretisation has 
been accommodated to two ways: by user interaction and by the 
use of automatic, program-driven refinement based on error 
estimates. 
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7.1 The Nature of the Triangular Mesh 

The essential feature of the mesh generated by ESCAPADE is that 
the connectivity of the nodes is on a nearest neighbour basis. This 
ensures that the control regions associated with the nodes donot 
overlap. This is important since it will ensure that the 
discretisation of the electron and hole continuity equations is 
consistent throughout the device. In addition the nearest neighbour 
connectivity results in a mesh where most triangles do not contain 
obtuse angles. Since triangles with high aspect ratios are recognised 
as sources of discretisation error this choice of connectivity has 
considerable advantages. 

7.2 Mesh Generation and Refinement 

With no information other than the geometric specification of the 
device, ESCAPADE will construct a coarse triangular mesh sub
dividing the defining line segments using a characteristic feature 
size. The feature size is related to both the largest and smallest 
segment length in the geometric description. The node density 
within the device is initially determined by the distribution of 
nodes along the defining line segments, so that where the average 
feature size is small the density of nodes is increased and where 
the average size is large the density is reduced. Figure 4 shows a 
mesh produce solely from the geometric description of the device. 

Figue 4 : An Initail Mesh Produced for the Geometric Data 

In general this automatic generation leads to an acceptable 
distribution of nodes throughout the device. However there are 
clearly situations where the user of the program has insight into 
the device's mode of operation. This information can obviously be 
used to direct the mesh generator. ESCAPADE allows the user a 
limited amount of control of node distribution. The user is able to 
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specify the number of nodes generated on a particular defining 
line segment and bias the distribution to either end of the 
segment. A global element size can be specified which overrides 
that estimated within the program. The user can also add segments 
to the geometric definition or direct the generation of nodes. With 
these mesh control facilities it is thought that an experienced user 
can influence the mesh generation to advantage. 

With the generation of a coarse mesh ESCAPADE can be directed 
to adapt the discretisation using a number of physical parameters. 
Figure 5 shows a mesh that has been refined using the impurity 
profile present in the device. Two passes of the adaptive process 
have been performed. In this way ESCAPADE seeks to concentrate 
any increased node density to areas of interest as indicated by the 
variation of field variables. The additional nodes arc introduced by 
bisecting the edges of the discretisation and performing a Delaunay 
adjustment where necessary. 

With refinement there is a tendency for the implicit finite mesh 
to deform. This deformation of the mesh is controlled by 
smoothing the distribution of nodes. Currently the smoothing 
alogorithm used moves nodes to the centroid of its neighbours. The 
use of this smoothing and swapping ensures the nearest neighbour 
configuration of the underlying mesh. 

Figure 5 : A Mesh after Impurity Profile Refiniment 

8 Linear Algebra 

Within ESCAPADE both uncoupled and coupled solution procedures 
are provided for, and consequently both symmetric and asymmetric 
systems of equations will require resolution. As is well known, the 
approximation of many types of partial differential equations will 
lead to very large sparse matrices and it is important to make use 
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of the sparsity of these systems. ESCAPADE takes into account 
this sparsity its solution procedures and takes use of disk files to 
maintain sparsity patterns and system information. 

ESCAPADE contains two linear solvers currently: firstly an 
incomplete Choleski conjugate gradient solver for the uncoupled 
Poisson equations and the equations arising from the initial guess 
strategy, and secondly a fully sparse direct Gaussian decomposition 
for any asymmetric matrices arising from the uncoupled and 
coupled solution. 

The ICCG solver ,is the classical conjugate gradient algorithm using 
a prcconditioner derived from the work of Gusstafson [17] and 
Meijerink and van der Vorst [18]. This method of solution is well 
recognised as being the most efficient for symmetric positive 
definite matrices. 

The matrices arising from the continuity equations and the fully 
coupled system are asymetric and are currently solved using a 
variant of the sparse direct Gaussian reduction in the Harwell 
Subroutine Library [19] (Subroutine MA28, Duff [20]). This is 
provide a robust and efficient whilst research continues for an 
effective asymmetric iterative solver using one of the derivatives 
of the conjugate gradient method, such conjugate gradients squared 
(CGS, Sonnevcld [21]). 

9 Conclusions 

ESCAPADE is now in testing and is showing promising levels of 
performance on a number of simple benchmark problems. Over the 
next few months there will be a full evaluation of the current 
solver sequences implemented and an extension of the physical 
models contained in the program. It is hoped to report some of 
these at forth comming conferences. 

Experience so far indicates that the virtual machine approach the 
algorithmic design and evaluation will become very important in 
many areas of mathematical physics, not only in semiconductor 
device simulation and there are already initial plans to use the 
approach in software for electromagnetics. 
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