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THE USE OF FACTORIZATION METHODS FOR SOLVING THE
CHARGE TRANSFER EQUATIONS IN SEMICONDUCTOR DEVICES

G.V.Gadiyak, M.S.Obrecht

Institute of Theoretical and Applied Mechanics
USSR Academy of Sciences, Novosibirsk 630090

The peper presents the results of the applica-
tion of the known factorization method for continui-
ty equations for electrons and holes. It is shown
that the Buleev-Stone method traditionelly employed
in the given situation yields considerably to ano-
ther version of the factorization method. The expli-
cit expressions for iterative formulae in both ca-
ses are represented.

Introduction

At present there is published a considerable
number of papers [ 1-61] devoted to the application
of the factorization methods for solving the equat-
ions of mathematical physics. The substantiation of
the factorization algorithms convergence is carried
out mainly for the cases when a system of differen-
ce equations approximeting the initial differential
equations satisfies ‘the diagonel predominance condi-
tion. In practice in a number of cases such a predo-
minance is absent as, f.e., for equations of elect-
ron and hole transfer in semiconductor. In this si-
tuation up to now the Buleev factorization method
has been traditionally used which enables one to
find the solution also in the absence of the diago-
nal predominance. In the present paper there is sug-
gested for the mentioned case to make use of the
known modification of the Buleev method which al-
lows to reduce essentially the computational efforts
for deriving the solution.

I. The governing equation and the difference scheme

An equation describing the electrons transfer
in a semiconductor in the diffusion-drift approxima-
tion after the passage to the dimensionless variab-
les hag the following form
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V(In- prIw)= bt (1)
e ) Tpd+n)+T (14p
Here , and , are the density end the life time
of electrons and holes, respectively, is the
electron mobility, is the electrostatic potential.
Meking use of the integral-interpolation Samarsky’s
formula 7 or of the Marchuk’s integral identity
8 , one can derive the difference scheme 3 ap-
proximeting the equation (I)
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The Bernoulli function B(u)= LLJ(e'Lp(u)*D steps
in the coordinates h;=X;,%;" Y,y The upper index
0 designetes the velues frdm the foregoing Gummel
iteration. It is obvious from the form of coeffici-
ents of Eq.(2) that the diagonel predominance does
not hold in this case. For solving the Eq.(I) there
exist two alternatives: either pass on to the vari-
ebles F_=nexp(-P)and P, exp (¥), then write down the dif-
ference scheme which will satisfy the diagonal pre-
dominance condition or find an efficient method of
solving the system (2). The first means is undesireb-
le because & computer cannot operate at too large
and too smell numbers and the variables values @,
and P, can change by meny orders in virtue of the
exponential character of the dependence on the ap-
plied voltage. So for the MOSFET’s with the voltage
on the substrate -5 and on the drain +5 the values
of the mentioned variables chane more than by 150
orders, thet it is inedmissible for most computers.
In real schemes the MOSFET’s function et the volta-
ges up to a few tens of volts.

The difficulties of the work with a system of
equations not satisfying the diagonal predominance
condition are associated with the fact that a num-
ber of efficient methods ceases to converge at such
conditions (as, f.e., the method of incomplete fac-
torizetion end parabolic sweeps [1,6] ). Many me-
thods converge extremely slowly because a system of
equations (2? is ill-conditioned (so, f.e., the



149

Zeidel method and the over relaxation method conver-
ge in thousend and more iterations). The Buleev-Sto-
ne method [ 3,471 without application of"canceling"
(the iterative parameter in the method [4] is equal
to zero) has proved to be sufficiently efficient
method for solving the problem (2) which up to now
is used in the applied computational programs of
the semiconductor devices. In paper 5 there has
been suggested the Stone method modification which
is tested when solving the heat conduction equation
and has proved to be more efficient as compared with
the Stone method. In the given work there is carried
out the comparison of the methods [ 41 and [ 5] when
applied to the system (2).

IT. Two means of constructing the factorization
schemes

Write down a system of equations (2) in the

maetrix form

Here 924, is the pentadiagonal metrix of the dimensi-
on (N MJ % (N M),r, is the vector of the solution,
{¢. is the right-hend side vector. The corresponden-
ce of the indices i{, } and k is set by the formula
k=q~1ym»u . The correspondence of the matrix coeffi-
ciénts %¢, to those of the system (2) is represented
in Fig.I. Attempt to approximate as much as possib-
le the matrixf?gk by the product of the lower trian-
gular matrixl; and the upper triangular il,, matrix
having the four-diagonal structure (see Fig.2). Per-
forming the multiplication of the matrices L end

W and equeting (¢, =(Luw), , we arrive at a system

of equations relating the coefficients M , v, A of
the matrix L and those y,5 %,p of the matrix U
with the coefficients of the governing system (2).

@r = e+ Al * Mg Ry *VePon

“0e = Ap Yooy t Ve Room

I"gc = ‘)LKL—M (3)
“Cp o= Tyt My Py

de = Ag Xy

VT TR TR (4)

o o O s By v

For certainty we shall speak about electrons though

all the said is referred to an equal extent +o the
holes also.
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Ve = &gt Ay 9, s (5)

x_ = - +V M .
As it can be aeaéﬁ:'{fy“seméri, v&e have a system of nine
equations with seven unknown quentities for e&g.ch
value of {=1,2,..., M *N, i.e. it is impossible
to represent the matrix Q. exactly in the form of
the product of two trianguler matrices. As a result
there remain either the "superfluous" diagonals J»,Jb
or ¥, X, The version &¢=$,=0 corresponds to the
Buleeév-Stone method [3,4]°, end the version ¥ =% =0
corresponds to the method stated in 5 (with the
zero value of the iterative parameter). To complete
a picture, we represent the expressions for.comput-
ing the coefficients of the triangular matrices:

Tor the case (4):

oo 205 % =05 8 2-Co 5 py ==l
(L =€~ A By Ve Prw = g + o Apr o Ve
Ao/ V=B e Ve s Ber Ay P XMl Ve O 5

at that A :0: Vv, =0 at <M in virtue of the coef-
ficients «, and b, determination (at greater length
see [4,5] );

for the case (5):

Prede; Ve-be/ e Yo r @ e S~ e Epamt Ve oo ;

(6)

(7
ﬂthocs“”/h-mﬁ >\a='(‘)t*‘ﬁ-"w")/xa'i ;

X, = ey By =-Cot g d-z.mu' by =S Peere®ey;

as in the case (6) N\ =0 for L=1 3v,=0 forx efr?.

The iterative process of finding the solution
ig constructed in the following way: at first a va-
lue of the auxiliary veriable shouls be found

teg AM - M .

zmzumnﬁﬂ‘gu‘ )mz(ﬁz*s'a@&sns) (8)
where Qes is the matrix embodying the "superfluous"
diagonals, the rest of its elements equals zerxo,

being the iteretion number. Then we find the soluti-
on

bt = QWY 2. (9)

For convenience we represent the explicit formula
:g%‘ (8,9) in the case of using the schemes (6) and
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For the scheme (6) we have a direct sweep
(o= 1,2, .0, A M)

t ¢ :
Zm.:'Am.zm—L' v Zm-M *12'«.'* 0% Sm.-M “‘m-mifkm,/‘)m.i “’mm-x (_'-1 0)

Q,' t ém_ é
:1Bm.+ _‘L(dm-ih’m..n-(* z%-l)r "'_(cm.m“m.-mi f Zm-"’l)7
XM—L Ym.vl"]
end a reverse sweep (m = NM, AM-{ .., |
tef Eyy beg - bt :
h""\-:(zm_gmn':ct~J)“°/1'M¢N>/<\/m:<zm*Ch«-h'n::ihd'hvh'n:;M (11)

Similerly for the scheme (7) we have for
=142 .. NM

t
Zm.z ﬁm'foﬂ/'%(sm-ﬂ rin"‘”MfZ—Z”\-‘le)* A""(xm"nm'"'l- Z"“L)

2
- \)m. EM.-N (1 )
and for Me=ANM NM-1 ..., 1
kel ket bl £l
hn: =(Zh‘--8mnm+1—xmnmvﬁ-l -.thh'mfm)/ym_ (13)

The method [ 3,4) without "canceling" is given
by expressions (2,6,10,11) and the method (5] by
expressions (2,7,12,135

ITII. Computational results

A comparison of the schemes (6) and (7) effici-
ency is carried out at the example of the solution
of the continuity and Poisson equation for the HOS-
FET in the two-dimensional approximation.

The results are represented in Table I and in
Pigs. 3a,b. There is considered a case of the MOS-
FET with the impurity concentration: in regions of
the gource and the drain 10* cm, in the substrate
10 cm , applied voltage to the source 0, to the
substrate 0, to the drain +3 and to the gate +5
volts, the efficlent channel length 3.5 um. It is
seen from the table that the scheme (7) “is essenti-
ally more economical with respect to the number of
iterations. So for the continuity equation fox ho-
les and for the Poisson equation it is required two
timess less iterations for achieving the same accu-
racy and for solving the continuity equation for
electrons it is required even 3-4 times less itera-
tions. Since the number of operations needed for
one iteration is close in both cases, the time of
the central processor needed for solving the equat-
ion in the casge of using the scheme (7) is less,
For the first two equations it is less 1.5-1.7 ti-
mes, for the latter - 2.5-3.5 times.
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Table I

61 47 42 38 36 34 32 31
13 12 11 11 10 10 10 9

152 59 56 53 47 42 35 3

64 63 62 61 60 58 56 54

¥ 30 29 29 29 28 28 27 26
N 9 10 M 12 13 14 15
N 30 29 28 27 27 26 25
9 9 9 9 9 9 8
28 23 18 16 16 16 15
P 10 8 6 7 8 7 7
9 53 50 47 40 38 38 36

25 25 23 19 19 18 16

The number of iterations necessary for achieving
the preset residuasl by solving the continuity

equations for electrons (h ) and holes (P ), and
the Poisson equation (Y ) for the given number of
Gummel iteration N,. The upper number is the num-
ber of iterations “necessary for the method (2,6,
10,11); the lower one for the method (2,7,12,13).
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The dependence of the residual on the iteration
number is given in Figs. 3a,b for the continuity equ-
etion of electron and hole, respectively. It is seen
thet in all the cases the scheme (7) has proved to be
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Pigs. 3a,b Dependence of the decimal logarithm of residu-
al of solving the continuity equation for electrons (a)
and holes (b) on the iteration number.

- method (2,6,10,11)

_____ method (2,7,12,13)
1,2,3,4 - 1-st, 5-th, 10-th and 15-th Gummel iteration
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more efficient. The residual was determined via the
formula

t t
Rel iT%ﬁLSNKWk‘feI
at that the coefficients of the governing system
were normelized by a central one so that & = 1.

Conclusions

The method suggested in [5] without "canceling"
(the iterative paremeter is equal to zero) whose
computational formulae are given in (2,7,12,13) is
more efficient than the other methods employed no-
wadays for solving the charge transfer equation in
semiconductor devices. The method is easily program-
med, it can be applied to systems without diagonal
predominance.

The suthors are thankful to V.P.Ginkin for re-
commendations on the use of the method [57] .
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