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Summary 

Stochastic geometry effects such as fluctuations of the 

oxide thickness give rise to statistical components of the 

device parameters. In this paper a perturbation method will be 

outlined in order to construct the potential equations. It 

will then be possible to evaluate the mean square deviation 

of the device current starting from the statistical parameters 

of the geometry. 

1) Introduction 

Stochastic geometry effects become more and more 

important in present semiconductor device design. Due to the 

reduction of the device dimensions it is necessary to include 

the stochastic properties of the domain. This requires the 

solution of stochastic differential systems giving the 

expectation value or the mean square deviation of a potential 

or a current. Because the general equations are quite compli

cated a perturbation approach is used. The stochastic proper

ties are treated as small perturbations of a well defined 

geometry. This approach will lead to analytical formulae 

which can be interpreted physically. 

In the recent literature, some articles deal with stocha

stic effects in semiconductor devices such as MOS capacitances 

and MOS transistors [l] [ii]. For the MOS capacitances a very 
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good agreement between theoretical and experimental results 

were found [3]. This paper deals with polysilicon interconnects 

where the square resistance RQ is no longer negligible. The 

equations are analoguous to those used for modelling distributed 

RC filters in hybrid microelectronics [4][5J. 

In this contribution we shall limit ourselves to a two 

dimensional problem. However, the techniques used to model 

stochastic variations can still be applied to the three 

dimensional case. 

2) Fundamental equations 

We assume the polysilicon interconnect being flat and 

isolated from the underlying perfect conductor by a dielectric 

layer having a capacitance 

C per unit area (fig.l). 

If the polysilicon has a 

square resistance Rg, the 

potential equation using 

phasor notation reads 14| : 

V2<j> - jWR̂ pf) = 0 (1) 

Defining the characteristic 

distance L by: 

L = /2/doRf-p) (2) 

Fig.l: Isometric view of the model 
for a polysilicon interconnect. (i) ̂ s reduced to: 
The conducting top layer has a 
capacitance C per unit area with y2^ _ =2 § - Q (3) 
respect to the bottom layer. L 

In practical cases the geometry is not well defined. Due to 

stochastic thichness varations the values of RQ and C vary from 

point to point. The easiest way to model similar phenomena is 

to write the characteristic length (2) as: 

L = LQ + L (r) (4) 

where L is a constant denoting the mean value of L and L is 

out 

0 
a two dimensional stochastic process describing the stochastic 

part superimposed on Ln. It is reasonable to assume the 
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ampli tude of L being much smaller than LQ so t h a t a perturba-

t i o n a l approach can be s e t up. The p o t e n t i a l <|) i s t h e n written 

i n a s i m i l a r way as ( 4 ) : 

c|> = <j)0 + <J> (J) (5) 

The equations for (j>Q and $ are found to be: 

v 2 * 0 - ^ 4>0 = o (6) 

2 2i 4 j L l 

L o Lo 
(7) 

Other da t e such as the c u r r e n t s I , and I ^ can be expanded 
in out 

in a similar way as (4). 

3) Solution of the zeroth order equation 

A formal solution can be obtained by using the Green's 

function G(rlr') which is a solution of: 

V2G(r|r') -^-G(r|r') =6(r-r') (8) 

A s o l u t i o n of (2) i n the two dimensional i n f i n i t e p l a n e can be 

found i n the l i t e r a t u r e [6J . In our case we use a G r e e n ' s 

func t ion s a t i s f y i n g the boundary cond i t ions shown on f i g . 2 . 

y 

<f>" = G = 0 

* - • ' = v i n 

n Vd>.u =0 VG.u =0 r n n 

G = (j)' = 0 

out 

Vifi.u =0 VG.u =0 n n 

Fig.2 : Boundary conditions for the potentials and the 
Green's function, u is t 

n 

Applying Green ' s theorem y i e l d s : 

Green's function, u is the normal unity vector, 
n 

<j>0(r') = (f) |<})0(r)VG(r|r ,).un - G(r |r')V<J>0 (r) . u j dC (9) 

9S 
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The externally applied voltages are V and V . However, as 

will be shown in the next section, it is more convenient to 

write <J) = <j)' + <j>" where <)>' corresponds to v t=0 and <J>" to 

V =0. Inserting the boundary conditions for <}>', $" and G 

in (9) one obtains: 

<t>'(r') = V . n VG(r[r').u dC ' n 
A'A 

and 

>0 ( r , ) = Vout 
VG(r|r').u dC 

n 

(10) 

(11) 

BB' 

These formal solutions will be very usefull to get closed form 

expressions for the f i r s t order currents 1^ i n and 1̂  Q u f c . 

4) Solution of the f i rs t order equation 

The f i r s t order potential can also be written as 

<$>. = <)>,' + (f>". Using Green's theorem the potentials are easily 

found to be: 

c|>J(r') = - ^ j L ( r ) (J)' ( r ) G ( r | r ' ) dS (12) 

" 0 S 

(J^(r') = - ^ 
L0 S 

L^r) <J)£(r) G(r|r ') dS (13) 

For the calculation of the currents, we shall limit ourselves 

t o I,1 J ( i .e . the input current for a short circuited output 
l, in 

V =0): 
out 

Ll,in ~ R̂ , 
Vi'.u d l ' 

1 n 
(14) 

A'A 

Fi l l ing (12) in (14) and changing the order of integration 

gives: 

1 ,m 
Wo 

dS L^r) (|>£(r) 

A'A 

V G(r | r ' ) .u ' d l ' 
r ' n (15) 

Remark that the last integral appearing in (15) is nothing 

else than the relation (10) for the potential <}>' (using the 



186 

r e c i p r o c i t y p r o p e r t i e s of the Green 's f u n c t i o n ) . One g e t s 

f i n a l l y : 

I ' . = - ^ r dS L l ( r ) <|>-<r) -^ ( 1 6 ) 

in " 1 ' ± n T, T 3 

Wo s 
Similar expressions can be obtained for the other current 

components i! . i" J and I" . Note that (16) gives the 
1,out 1,in 1,out 

current I* as a function of the stochastic process L. (r) 
1/in ^ 1 

and the zeroth order potentials. It is interesting to remark 

that the Green's function no longer appears in (16). 

The function L (r) is a stochastic process and therefore 

not known as an explicit function of x and y. Only statistical 

parameters such as the mean value <&.> =0 or the correlation 

of the current I' . can be evaluated by: 
l,in 

function <L [r.)Ii. (r„)> are given. The mean square deviation 

ed b; 

. I I < i : , ! • * . > - 1 6 

l , i n l , i n 2 6 2 
RDL0Vin " S 

dS2 ^ ( r ^ L ^ r ^ 

•6(J?i)*6('i) W v V v * (17) 

Starting from the correlation function and the zeroth order 

potential the mean square deviation of the current I' can 

be evaluated. Similar formulae can be written down for the 

other current components. 

5) Application to a short circuited interconnect 

If the second terminal is short circuited V =0 and the 
out 

zeroth order solution is then easily found to be: 

sh (1+j) j fS . 

•0<*> - 4 , . ( X ) - - v ; 8 ) 
sh (1+j) —-

L0 

The i n p u t c u r r e n t I ' i s then : 

c hii±i)a 
j . = . i _ w (*0o = i _ w v l±i ^ P _ 

0 , i n RQ W l 8x ;x=0 Rĵ  in LQ o h ( l + j ) a (19) 
L 0 
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The mean square deviation of the input current is then: 

1,in 1,in 
16 
2 6 2 . 

Win' 
dS, dS2 ^ ( r ^ L ^ r ^ 

*0(X1)2<(>0(X2)2 (20) 

For the correlation function the following relation is 

proposed |2|: „ , 

- - 2 - | v ?
2 l

/ 2 P <L1(r1)L1(r2)> = A e (21) 

Although there is no physical or mathematical proof for (21), 

the function (21) decreases with the distance l^-r^ making 

(21) acceptable. The distance p can be defined as the 

correlation distance: if two points are separated by a 

distance greater than p the L-values in both points become 

statistically independent. 

Inserting (18) and (21) into (19) and normalising the 

mean square deviation to I . IQ i n one gets: 

l,in l,in 
~I I* 

0,in 0,in 

8 
4 2 2 2a, 2,2a. 

L*W ch (!=•) - cos (—) 
0 L0 L0 

w w 

o 6 
dy2 e 

(y ry 2)
2/2p 2 

a 

dx« 

a -(x -x2)
2/2p2r d+j)(x1-a) 

dx2 e | s h — 

0 

sh-

J0 

(l-j)(x2-a) 
(22) 

After some calculations using p « a (not p«W) one obtains 

finally: 

Il>ln
Il,in>

 = 2/2 irp3A2 

.2 
I0,inI0,in LQW 

P LQ 

(23) 
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where: 

W 

f<U> -
w w 

erf (-=-) /2p /2p 

2 2 
A 1 -W V2p 1 (24) 

/IF yR 

. 2 a u 2a , 2a 2a , 4a , 2 a . 2 a „„ 2a 2a 
sh—ch— + s in : r -cos— + ; sin—-chr—cosr—snr-

a_ L0 LQ LQ LQ LQ LQ L 0 L 0 LQ 
9 Ln ^,2/2a^ 2,2a. 

0 ch (-—) - cos (—) 0 (25) 

The functions f and g are displayed on fig.3. For V*»p, (24) 

can be approximated by f(W/p) ̂  W//? . The mean square 

deviation (23) is then 

proportional to 1/W. This 

means that if the width W 

of the interconnect is 

reduced by scaling factor 

a , the mean square 

deviation will increase 

with 1/a if the same 

fabrication technology is 

used (i.e. p remains 

unchanged). 

, 

5 -

4 _ 

3 -

2 -

1 

n 

f ( x ) , g ( x ) 

x*». / 

/ f 

g 

1— 
X 

0 10 

Fig.3: Plot of the functions f 
and g. Note that g-—l in the 
interesting interval â I... 6) conclusion 

In this paper a 

technique has been 

outlined to model stochastic phenomena of a polysilicon inter

connect. A simplified two dimensional example was used to 

illustrate the method. For the case of a short circuited line 

it was possible to obtain analytical results yielding the 

mean square deviation of the input current as a function of the 

geometry and the statistical parameters such as the correlation 

distance p. The method gives essentially a stochastic compo

nent as a function of the zeroth order potential distribution. 

It is not essential whether § in (17) is known analytically 

or numerically. Although the geometry shown on fig.l is not 

a realistic picture of an actual polysilicon interconnect, the 
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same perturbation method can still be applied to three 

dimensional problems. The method can also be extended to 

include other effects such as random edge phenomena. 
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