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0. ABSTRACT 

Numerical modelling of semiconductors entails the 
solution of a large set of highly nonlinear equations. The 
problem of solving this equation set may be supplanted by 
an equivalent unconstrained minimization which would 
typically use the Newton or Cauchy steepest descent 
vector as a search direction. Whereas the Newton approach 
has superlinear convergence in the neighbourhood of the 
solution, the Cauchy method has a slower rate of 
convergence. However the convergence radius of the Cauchy 
method is superior to the Newton method. 

In the paper we consider blending methods which 
combine the Cauchy and Newton methods in an attempt to 
realise the benefits of both. Line and path Cauchy-Newton 
methods are presented which include, as special cases, the 
Model-Trust and Bank & Rose methods. 

1. INTRODUCTION AND PROBLEM DEFINITION 

Let u = [u^, u£, U3, Ufj] e R^ and consider 
the set of nonlinear equations g(u) = 0 (1.1) 
where g (u) = [g^ g2, g3 ••• g^] e RN 
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Before describing any algorithm for finding the 
solution vector u* it is useful to recast the above as an 
equivalent unconstrained minimization problem [14]. Thus we 
consider a real valued function V(u), defined here as 

V(u) = ig'g ( 1 > 2 ) 

and we note that V'k = V Vk = Jk gk,
 i n which the Jacobian 

matrix JJJ as components Jjj =3 gj73 uj. 

We make two assumptions for the object function V(u): 

A(i) The function V(u) is unimodal: thus g(uk) = W k = 0 
except for the single case denoted here by u = u . 

A(ii) The function V(u) is convex. 

Clearly, the vector u = u*, for which the equalityl.l 
is satisfied, also minimizes V(u) and, for the above object 
function, 

V(u*) - min V(u) = 0 ; u e R N 

The minimum of V(u) may be sought using the sequence of 
trial vectors UQ, UJ, U£ . .. defined by 

u k+i = uk + tk x k ; xk e R
N 5 tk E R1 — (1-3) 

The value of tk is selected such that the successive 
trial vectors reduce the objective function V(u), i.e. 
V(uk+1) < V(uk). 

Two celebrated methods for minimizing a function are 
Cauchy's steepest descent method and Newton's method. In 
Cauchy's method the change vector x is directed along the 
negative gradient vector, that is 

xk " W k (1-4) 

It is important to note that the rate of convergence of 
Cauchy's method is greatly dependent upon scaling and we 
will assume hereinafter that some beneficial scalingn scheme 
has been incorporated when we utilise the Cauchy vector. 

In Newton's method the change vector xk is defined as 

x k = - jk-l W k (1.5) 

with tk = 1 for the classical-standard Newton method and tk<l 
for the damped Newton case. We note that for the object 
function defined by equation 1.2 then (xk

c)T X{cN = 2V>0, 
which ensures that the object function V(u) decreases along 
the Newton direction xk

N. 
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More generally we can define a change vector x as 

xk = -Mk
_1 V Vk — (1.6) 

where Mk is chosen such that V(uk+i) < V(uk). 

Whenever the change vector xk has been chosen we may 
execute a line search in which the graph of V is scanned, 
along the path p(t) = uk + t xk. 

This linear search technique seeks to find an 
approximate value t = t* at which V(t) takes its minimum 
value. 

The solution algorithm of equation 1.4 therefore 
entails two major tasks: 

T(i) Find a good search direction xk; such that x k
T W k<0 

T(ii) Find a good estimate of t = t*. 

The well known Bank & Rose "tk" algorithm of reference 
7 is essentially a line search strategy in which tk is 
computed as 

tk = (1 + K|| gk|| )"1 (1.7) 

The method begins with small K (large tk) and progressively 
increases K until | | gk+i | | < | | gk I I

 : t n u s although the 
method has the flavour of a line search it ends as soon 
as any suitable damping factor tk has been found (whereas 
true linear search seeks an estimate of the best tk value). 

2. BLEND VECTOR METHODS 

It is well known that, whereas the Newton method has a 
high superlinear convergence property in the neighbourhood 
of u*, the Cauchy steepest descent method has a slower 
linear convergence. However the convergence radius of the 
Cauchy method is greater than the corresponding value for 
Newton's method. The Cauchy method typically makes good 
progress in the early stages and thereafter zig-zags slowly 
onwards. Conversely the Newton method is usually poor in 
the early iterations and extremely good later. A blending 
method attempts to combine the Cauchy and Newton methods to 
obtain the benefits of both. 

An optimal blending method would ensure 
(i) that divergence was avoided, 
(ii) that superlinear convergence was achieved, where 

possible. 
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Bank & Rose [8] proposed a blending vector xk
B given by 

x k B [ J k + a k i ] Vv = - MkVv (2.1) 

which is a special case of the formula proposed in reference 
16 

xkB = ~ tJk + a k D] VV, where D is a diagonal 
enhancement matrix. 

^o 

R 

Figure 1 Blend vector x^ =• -tJ
k
+0lT^Vk 

The blend vector of equation 2.1 has the following 
properties (see figure 1). 

p(i) as ak -> o xk
b -> xk

N 

p(ii) as ak increases | | xk
B | | decreases 

p(iii) as ak -> °°| | XRB | | -> 0 and | | xk
B | | tends to 

colinearity with xk
c 

p(iv) (xi,c)t xkB > 0; V(uk + x) < V(uk) for some 
CfeS 0. 

p(v) The eigenvalues XM of the M matrix are simply the 
eigenvalues \J of the J matrix shifted upwards by 
an amount o^ [3]: thus increasing ak improves the 
condition number of matrix M and as ak -> °° the 
condition number (M) -> 1. 



366 

Concerning the economics of the method, it is important 
to note that for each discrete value of ak the computation 
to find the blend vector xk

B entails the solution of the 
equation set Mk(ak) xk

B = - W^; thus a full Gauss 
reduction is necessary to determine xk

B. 

An alternative strategy is to attempt to mimic the 
blend vector in equation 2.1 using a nonlinear combination 
of the Cauchy and Newton vectors xk

c and x\^. Thus for 
example McCartin [11] used a blending 

xk
B = (n-l)2xk

n + Cc xk<= (2.2) 

in which ne [0,1] and the non-negative constant Cc is 
prescribed. Blending function 2.2 exhibits the properties 
p(i) - p(v), where r) supplants the ak parameter. 

3. MODEL TRUST ALGORITHM 

In the model trust algorithm [11,12] a blending 
function of the general form 2.2 is used. The sequence of 
trial solutions is generated as uk+i = uk + xk

B; in which 
xk B = xkB^rl) i-s found by imposing the move constraint 
I I x k B I I ̂  <$k> w n e r e 5k ^s a prescribed local neighbourhood 
radius. 

The method requires the 'a priori1 prescription of the 
local neighbourhood radius 6 k : the quality of this quessed 
value is appraised by comparing the changes VV = V k +i - V k of 
the true function V with the change VQ = Qk+1 = Q k of a 
quadratic funtion Q which approximates V in the 
neighbourhood of uk. The neighbourhood is then expanded or 
contracted, based upon the outcome of the comparison. (see 
ref. 11 for details). 

4. ALGORITHMS COMBINING BLENDING AND SEARCHING 

Generation of the Newton change vector x k
N is 

relatively expensive because it entails a full Gauss 
reduction step for the M k matrix. Whenever the vector x k

N 

has been determined it seems prudent to extract the maximum 
improvement (reduction) in V(u). This suggests the use of a 
line search or similar operation, such as in the Bank & 
Rose "t k" algorithm. 

On the other hand the model trust algorithm, which 
again entails the expense of determining the Newton vector 
xk , does not perform any line searches. 
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The two algorithms presented below attempt to combine 
the benefits of both methods. These two algorithms are 

(i) Blend-and-search algorithm, 
(ii) Blend-then-search algorithm. 

4•1 Blend-And-Search Algorithm 

Consider a general blend vector 

xkB = CN (H-l)2 XkN + cc.
 n xk

c (4.1) 

in which ne [0,1], Cc > 0 is prescribed and CN satisfies 

xk" 
| = <skmax. Here 6k

max is a prescribed value 
representing the current maximum permissible length of the 
blend vector. 

The central idea in this algorithm is to perform a 
linear search along the path P(n) = "k + xkB ^ ) ; thus 
scanning the function V(r)) to obtain the location n* at 
which V(n) is minimum (see figure 2). 

(a) (b) 

Figure 2 Line search along the path P(n) 

(a) 
(b) 

case nA > 0 
case n = 0, so that x Vu 
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«Blend-And-Search» 
(1) k <- o; prescribe u0 

(2) prescribe <5k 

(3) for n= 0 determine xk
B(0) and V(uk + xk

B(0)) 

(4) compute V (o) = T-l[V(uk+xk
B(T)) - V(uk + xk

B(o))] 

(5) if V'-(o) > 0 (as in figure 2b) 

(6) then n* = 0 

(7) else compute xk
c and call <<search(i?v)» to 

determine r|* (as in figure 2a) 

(8) uk+1 <- uk + xk
B(n*) 

(9) if converged 

(10) then exit 

(11) else k <- k+1; go to step 2. 

4.2 Blend-Then-Search Algorithm 

In this case we firstly find the blend solution xk
B(l"|) 

as in the model trust algorithm. Then a linear search is 
executed along the path P(t)=uk + t xk

B(n) 

«Blend-Then-Search» 
(1) k <- 0, prescribe u0 and 60 

(2) compute xk^ and xk
c 

(3) determine n e [0,1] such that | | xk
b(r|) I I < <$k 

(4) call «search (t*)>> to perform a line search along 
the path p(t) and hence determine an estimate t of 
the optimal t. 

(5) uk+l <_ U R + t*XkB (n) 

(6) if converged 

(7) then exit 

(8) else k <- k+1 

(9) set to neighbourhood radius 6k 

(10) go to step 2 
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5. USE OF AN APPROXIMATE JACOBIAN MATRIX 

The classical Newton step is often supplanted by the 
Newton-Richardson step Ji..xi<N = - W ^ , i < k; that is an 
earlier Jacobian matrix j£ is utilized over a number of 
iterations. The evaulation of x ^ for the case i = k 
entails a full Gauss reduction step whereas the case i<k 
entails only a Gauss partial-reduction or "resolution". The 
relative cost of these is Cost(full reduction) ,_ ^Qm 

Cost(partial reduction) 

where, typically, the cost index m e (0.5,2.0). Obviously 
we can extend the idea to the Cauchy vector also, so that 
the Cauchy step becomes x^0 = -J£ Wfc. 

6. APPRAISAL AND CLOSURE 

A number of Cauchy-Newton type algorithms have been 
presented which include all the currently reported 
algorithms as special cases. 

The Cauchy-Newton and Bank & Rose methods were used in 
the simulation of an off-state 5V reversed bias diode. The 
hole and electron quasi-fermi levels were assumed constant 
throughout the device and the behaviour was modelled by a 
single, highly nonlinear Poisson equation. The mesh 
comprised 338 nodes in 603 linear triangular finite 
elements. The equation solving phase, in which the Newton 
change vector x^N was determined, used an iterative, 
minimum-residual algorithm. In early stages, to reduce 
cost, a loose convergence criterion was applied yielding an 
approximate Newton vector. Under these circumstances the 
Cauchy-Newton algorithm was unconditionally convergent 
whereas the Bank & Rose algorithm frequently failed. 
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