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ABSTRACT 

The modeling of collisionless electron propagation in devices with 
a self-consistent treatment of the electrostatic potential is discussed. A 
technique for iteratively solving the wave equation along with Poisson's 
equation is presented, and factors affecting convergence of the solution 
are discussed. The importance of the self-consistent potential is illus
trated by example computations for resonant tunneling structures. 
Finally, extensions of the technique to treat more realistic band struc
tures and carrier scattering are discussed. 

1. INTRODUCTION 

Classical device analysis and simulation techniques are becoming 
increasingly questionable as device dimensions shrink and become com
parable to a DeBroglie wavelength (typically 100 A to 1000 A). Several 
devices whose operation is based on quantum interference have been 
proposed and demonstrated [1-7]. New device modeling approaches, 
which explicitly treat the wave nature of carriers will be required in 
order to simulate these devices and to assess the importance of quan
tum effects in ultra-small conventional devices. Future modeling tech
niques will treat electrons as waves propagating through the device 
according to Schrodinger's equation. Although several formalisms are 
being developed [8,9,10,11], a completely general, computationally 
feasible description of quantum transport in devices has not yet 
emerged. Simple treatments of quantum transport are useful for the 
insight into device performance that they can provide. They are 
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especially useful if a clear path is identified by which the restrictions 
of the simple model may be removed. 

The purpose of this paper is to discuss the application of a tech
nique pioneered by Tsu and Esaki jl,2] to the modeling of devices. We 
have extended this technique, wnich neglects carrier scattering, to 
evaluate the electron density self-consistently with the electrostatic 
potential. The basic technique is described in Sec. 2. and the self-
consistent calculations in Sec. 3. Two major limitations of this model, 
the assumption of a simple band structure and the neglect of scatter
ing, are discussed in Sec. 4 in which we describe our thoughts on how 
to relax these limitations and report on recent work in this area. 

2. COLLISIONLESS ELECTRON PROPAGATION IN DEV
ICES 

The technique used is briefly described as follows. Each of the 
two contacts of the one-dimensional device sketched in Fig. 1 is 
assumed to be in local thermodynamic equilibrium. The Fermi-levels 
of these contacts are separated by the applied bias. The contacts 
launch electrons into the device with a spectrum of wave-vectors, k*. 
The electron wavefunction in the device. _ 

*(!•) = V(x)exp(ikt-rt), (1) 
is determined by solving 

_d_ 
dx 

1 <Mx) 
7(x) dx 

= ^ M [Ep + E t(l-T(xri)-Ec(x)^(x)=0 (2) 

for the envelope function ^(x). In (2) r/(x) = m*(x)/m*(x0) describes 
the spatial variation of the effective mass with respect to that in the 
contact m*(x0). Et is the transverse energy, li2kt /2m*(xc), and Ep the 
longitudinal energy, t?k|/2m*(x0). The contact is located at x = x c . 

DEVICE 

E, 

Fig. 1 One dimensional device structure. 
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The electron density is obtained by summing the contributions 
due to the various k for each of the two oppositely flowing currents. 
For electrons impinging from the left, we have 

n1-r(x) = ^ - / d 3 ? | ^ + ( x ) | 2 f ( E k ) , (3) 

where f(Ek) is the Fermi-Dirac factor with the Fermi level of the left 
contact. 

When m*(x) iŝ  position-independent, ^(x) as determined from (2) 
is independent of kt and the integral over ky and k, in (3) can be per
formed analytically. The result is 

n 1 - r (x)=^r /dk J t |V k x
+ (x) | 2 a(k x ) (4) 

where tr{kx) is given by 

<*kj = ^ ^ ^ k I1 + exP((EFL " EOL " Ep)/kBT)] , (5) 

where E„ = i?kx
2/2m*(x0) and EFL is the Fermi level in the left con

tact. The total electron density versus position is then obtained by 
adding the contribution of the left contact to that of the right. 

An examination of (2) shows that Mx) depends on the transverse 
energy when the effective mass varies with position. The result is that 
the integral over kx and ky cannot be performed analytically and a 
rigorous evaluation of n(x) would require a calculation of ip(x) over a 
grid of transverse energies. To avoid this complication, we follow 
Vassell [9] and replace E t in (2) by its thermal average kBT. 

The computational procedure consists of incrementing the longi
tudinal wave-vector from zero to some maximum value. For each 
wave-vector, the wavefunction is computed, and the contribution to 
n(x) for electrons between kx and kx + dkx is evaluated. The contri
butions for each kx are then summed to evaluate the integral (4) 
numerically. This procedure is then repeated for the other contact. 

To calculate ip(x)} consider two sets of plane waves, one impinging 
from the left and the other one from the right (see Fig. 1 ) one can 
then in principle calculate the shape of the wave function inside the 
device for any value of the incident wave vector k . For an arbitrary 
potential within the device, this problem cannot bfsolved analytically, 
but from a numerical point of view, the potential may be approxi
mated by a finite number of steps as depicted in Fig. 2. At each inter
face, continuity of the current requires continuity of 
^ x j a n d —I— di&/dx. There are numerous ways to solve for # c ) 
among the^n^e technique of cascading transfer matrices which is dis
cussed in references |l] and [2]. 
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Fig. 2 The assumed E0(x) for numerical computations. 

A simple recursive solution of the wave equation has also proved 
successful [12]. Referring to Fig. 2, we write the solution in the section 
to the left of node j as 

(6) 
where 

ff,. = F je
ik^ + Rje-

ik* , 

p) 
is the wavevector in the jth section. Applying the boundary conditions 
at node j we find 

Fje** + R.^n = Fj + j e * ^ ' + R ^ e " 1 ^ . (8) 
and 
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Equations (8) and (9) may be solved for 

i [ F j e
i k " - Rje-^i] = ^ [ F j + 1 e V * - Rl+le*™\ . (9) 

) may be solved for 

^J 2 
1 + -r1 

(12) 

(13) 

(14) 

assume 
enable us to 

where 
S} = kj(xj - x H ) 

is the complex phase thickness and 

0.t = Fje
ikJxJ 

and 

${ = Rje"*^'. 
For electron waves launched from the left contact, we 
0N + i* = 1 and 0N+1

r = °; Equations (10) and (11) then enal 
calculate tp-} = <f>f + <frj recursively from node N to 1. 

To illustrate the technique, we present results for a simple 
resonant tunneling structure (similar to that reported in (4|) whose con
duction band edge versus position is shown in Fig. 3. Tne computed 
n(x) with this assumed Ep(x) is plotted in Fig. 4. These results were 
obtained with a spatial grid of 140 nodes and a grid with 1000 nodes in 
k^-space. It should be stressed that the computed n(x) implies that a 
substantial space-charge exists and, therefore, the assumed E0(x) can
not be correct. Accurate evaluations of the energy band and carrier 
density profiles in this structure require a self-consistent solution of the 
wave equation with Poisson's equation as discussed in the following 
section. 

3. SELF-CONSISTENT TREATMENT OF ELECTRON 
PROPAGATION 

The techniques discussed in the previous section permit one to 
evaluate the electron charge density n(x) and the current voltage 
characterisitics if the conduction band profile is assumed to be known. 
For resonant tunneling devices, the electrons spend a great deal of time 
trapped between confining barriers and the electron density may be 
large. For such cases, the energy band profile 

E 0 ( x ) = E o - X ( x ) - q V ( x ) , (15) 
must be evaluated self-consistently. In (15), E0 is the field-free vacuum 
level, X(x) the electron affinity, and V(x) the electrostatic potential. 
The electrostatic potential is obtained from Poisson's equation 
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Fig. 3 Device structure and dimensions for the resonant tunneling 
example. 
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Fig. 4 Computed electron density in the resonant 
tunneling example with an assumed, flat conduction band 
profile. The classical carrier density, also assuming a flat 
conduction band profile, is shown dashed. 
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d 
dx «sM 

dV(x) 
dx = -q[ ND

+(x) - NA
+ (x) - n(x) ] , (16) 

where the carrier density n(x) is obtained by solving the wave equation 
as described in Sec. 3. 

The procedure for modeling the propagation of electrons in sem
iconductor microstructures self-consistently is as follows. One first 
assumes an electrostatic potential V(x). The wave equation is then 
solved for ^(x) and n(x) is evaluated from (4). With this n(x), 
Poisson's equation is solved for a new V(x). The new V(x) is used to 
update Ec(x) which is inserted in the wave equation to solve for an 
updated n(x). The process is repeated until V(x) converges. We 
currently use V(x) as calculated classically for the microstrure [11] as 
the initial guess for the iteration; Poisson's equation is solved by a 
finite difference technique. 

To illustrate the self-consistent calculations, we consider the same 
resonant tunneling structure discussed in Sec. 2. Figure 5 compares 
Ec(x) computed self-consistently with that assumed in Sec. 2. This 
figure shows that space-charge effects substantially lower the energy 
band profile in the well. If the depth of this well is sufficient, a bound 
state may occur - in which case we should add to (3) the charge density 
associated with electrons in this well. For the structure considered, no 
such bound state occurs. 
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Fig. 5 Computed self-consistent energy band profile for the 
resonant tunneling example (solid line) compared with the 
assumed energy band profile used in Sec. 2 (dashed line). 
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Obtaining convergence in the self-consistent calculations requires 
some care. Such convergence problems may be especially difficult for 
resonant tunneling structures. The difficulties are best explained with 
the dd of Fig. 6 which shows the contributions to n(x) from electrons 
impinging from the left contact for various x and k,. (A similar plot 
exists for electrons entering from the right contact.) For each x, the 
contributions in the plot must be summed over kx to find n(x). 
Resonant tunneling produces sharp peaks in kx space which must be 
accurately resolved to evaluate n(x). The problem is especially severe 
when the confining barriers are wide. As the iteration proceeds, the 
location in kx space of the peaks changes as Ec(x) changes. Unless the 
peaks are accurately resolved, the iteration does not converge. When a 
suitable kx-space grid is chosen, the calculations converge rapidly as 
Fig. 7 shows. 

' g 6.6000<r-| 

Fig. 6 Contribution to n(x) versus kx and position, x. 
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Fig. 7 Maximum change in electrostatic potential versus iteration 
for the resonant tunneling example. 

4. SUMMARY 

In this paper we presented a technique for self-consistently com
puting the electron density and current in semiconductor microstruc-
tures which are short enough to neglect scattering. Example computa
tions illustrated the importance of the self-consistent potential. Several 
authors have previously treated the propagation of electrons in micros-
tructures without considering the self-consistent potential - others have 
treated bound states self-consistently. Our work differs in its emphasis 
on the self-consistent treatment of propagating waves. A key 

limitation of the approach is its neglect of scattering which will be 
present to some extent in any realistic device. An approach which 
appears to hold promise for incorporating scattering within the basic 
-Esaki approach consists of the Monte Carlo solution of the wave equa
tion as opposed to the deterministic solution outlined in Sec. 2. 
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