
528 

Modelling of Recessed Gate MESFET Structures. 

T.M. Barton, CM. Snowden, and J.R. Richardson 

Microwave Solid State Group, 
Department of Electrical and Electronic Engineering, 
The University of Leeds, Leeds, LS2 9JT, England. 

Summary 

The development of a new semiconductor device is a 
process which often involves an iterative cycle of design, 
fabrication, and re-design, until the desired specification is 
reached. Physical modelling of semiconductor devices is being 
used to a greater and greater extent to reduce the time spent 
in the design process, by allowing the engineer to rapidly 
determine the effect of the changes he may make to a device 
upon the device's final performance. The diverse nature of 
the geometries used in modern devices, even those in the same 
class, makes it almost essential that a modelling scheme be 
used which is capable of adapting, with the minimum of change 
to the software, to the geometry of the device to be modelled. 

The current work is concerned with the development of 
such a model. The software uses the techniques of automatic 
finite-difference grid generation, and adaptive refinement, to 
enable it to be used, without modification, on almost any 
device geometry. The software has been used to simulate a 
variety of GaAs MESFET's, with and without gate recesses and 
surface charge effects. The results of the simulation of both 
a planar and a recessed gate 1.0/im gate length device is 
presented. It will be seen that near pinch-off a large 
proportion of the current between the source and the drain of 
the device is flowing deep within the substrate, a phenomenon 
which greatly increases the calculated pinch-off voltage above 
that predicted by simple one-dimensional calculations, and 
results in an increase in calculated drain conductance, 
compared with experimental devices. 



529 

1. Introduction 

In order to provide the maximum flexibility, a program 
which is to be used in the engineering environment to simulate 
a variety of semiconductor devices must have several features. 
First, it must allow the user to quickly and easily change the 
parameters of the device to be modelled. These include the 
shape of the device, the doping profiles, and the number and 
position of the different types of contacts. Second, it must 
be possible to rapidly post-process the results of a 
simulation. This will often involve interactive, graphical 
presentation of data, which may be produced at any time after 
the simulation is complete. Third, the turnaround time for a 
simulation must be as sort as possible. Ideally, the 
simulation should be done interactively, however, this is 
rarely possible given the computer technology currently 
available and the complexity of the physical model. 
Simulation programs should be made as efficient as possible in 
order to minimise CPU time requirements, and, perhaps more 
importantly, to make the best possible use of scarce or 
expensive computer resources. 

Many of the simulation programs in use today do not have 
these features. Device simulations are often written for the 
purely research environment, as opposed to the engineering 
environment in which device design is carried out. Many 
simulation programs define the device geometry and parameters 
as part of the computer code, and to change them requires a 
knowledge of the language and techniques used by the writer. 
Many programs allow some degree of modification to be 
performed to the device as data to the running program, for 
example the length of a FET gate may be altered, or the depth 
of the active channel changed. There are still few programs 
which allow the entire device to be arbitrarily defined at 
run-time, and thus are able to be used for many different 
devices. 

The current work describes the implementation of a 
program which allows the user to define, in the data supplied 
at run-time, the device geometry and parameters, the type of 
simulation to be performed, the contact bias, and so fourth. 
Data is read, either from a computer terminal or a data file, 
as a set of instructions to the program. The program produces 
output in the form of binary files which may be read by a 
second program, which is used to interactively analyse the 
results of the simulation. Graphical data may be drawn on 
graphics terminals, or plotted, in response to instructions 
given at the user's terminal (for example figure 8). The 
program is written in the PASCAL language, and uses the 
advanced data types and structures provided by this language 
in order to efficiently store the finite difference grid used 
in the simulation. While this package is at present used as a 



530 

research tool, It's advantages for engineering design are 
clear. 

2. Semiconductor Model 

The model for the semiconductor used in the current 
simulation is based upon the well known classical equations, 
which may be derived from an approximate solution of the first 
two moments of the Boltzmann transport equation [1]. This 
model requires _the self-consistent solution of three coupled 
partial differential equations. 

The first of these is Poisson's equation, 

V2 * - ̂ f N n - n] (1) 
ilectrost, where <j> Is the electrostatic potential, q the electronic 

charge, e the permittivity of the semiconductor material, NR 

the donor density, and n the density of electrons in the 
conduction band. 

Second is the current density equation, given by 

Jn - -qn/inV^ + qDnVn (2) 

where p and D are respectively the electron mobility and 
diffusion coefficient, and J the electron current density. 

The third equation Is the so-called current continuity 
equation, which is 

j S - V.Jn + G (3) 

where G is the time rate of generation of electrons in the 
conduction band. At present, the model is used for unipolar 
devices only, and thus holes are neglected. 

These equations are solved over the simulation domain 
using finite-difference techniques, which are, in general 
faster and simpler to code than comparable finite-element 
methods. The Poisson equation is discretised using the normal 
Taylor series expansion for the potential about each node to 
find the second derivative [2]. The current density equation 
needs to be discretised with care. A Taylor series expansion 
for the electron density, in the fashion of that used in the 
discretisation of the potential function for the Poisson 
equation, causes numerical instability if the potential 
between adjacent nodes in the finite-difference mesh exceeds 
2kT / q volts. In order for this scheme to work, extremely 
small mesh spacings must be used. In order to overcome this 
problem, a discretisation which allows an exponential 
variation of electron density between nodes is used. The 
discrete current equation used here is similar to that 
proposed by Scharfetter and Gummel [3], which allows large 
space steps to be used, with the corresponding saving In 



531 

storage and calculation time. 

The current continuity equation is solved using a semi-
implicit, "half-point" discretisation scheme, similar to that 
used by Reiser [4]. A finite-difference discretisation is 
used to find the time derivative in equation (3). This 
results in a discrete continuity equation of the form 

. k+1 k 
5n n - n 
at " At 

- i [(W)V.j(n
k+1,a*E)kJ + (l-W)V.j[n

k,(/iE)kJ] (4) 
where the superscripts k and k+1 refer to the values of the 
superscripted variables at the current and the next timestep 
respectively. For w-0 this discretisation is fully explicit, 
and the solution is trivial. However, the explicit solution 
shown a strong instability, and great care must be exercised 
in the choice of space and time steps. For w>0, the solution 
becomes partially implicit, and subsequently much more stable. 
The assumption that the electron velocity (/;E) remains 
constant between timesteps may lead to some instability for 
long timesteps, .Lt _is found, however, that for doping 
densities below 10 cm in GaAs, a timestep of less than lOfS 
almost invariably guarantees stability. The current work 
takes w to be equal to h. 

The discretised forms of the semiconductor equations (1), 
(2), and (3) are solved using a successive over-relaxation 
(SOR) iterative scheme. Poisson's equation is first solved 
based upon the existing electron density. The current 
continuity equation is then solved in conjunction with the 
current density equation, to obtain the electron density at 
the next timestep, which again used in the solution of 
Poisson's equation. Repetition of this loop thus gives the 
time-dependent potential and electron density distributions 
throughout the device. Contact potentials are found by 
integration of the current equation around the contacts, and 
thus the variation of the contact currents with time may be 
found. 

3. The Finite-Difference Grid 

In order to ensure the maximum flexibility for the 
simulation software, details of the shape and characteristics 
of the semiconductor must be able to be specified at run-time, 
as part of the data supplied to the program by the user. As a 
result, the software must have no built-in specification for 
the shape of the device, the doping distribution, the contact 
types and positions, and so on. To be able to employ the 
optimum finite-difference grid for each device, the software 
must be able to generate the grid in response to the geometry 
and characteristics of the input device. This is done in two 
stages. When the simulation is commence I, a sparse, 



532 

regularised grid is generated, upon which a solution is 
obtained. The grid is then refined in response to this 
initial solution by the addition of rows and columns of mesh 
nodes into the existing grid. 

The geometry of the device is given to the program as a 
series of edges describing the outline of the device. Each of 
these has a type associated with it, for instance it may be a 
GaAs surface, an ohmic or Schottky contact, or a general 
Neumann boundary. These device edges are then checked to 
ensure that they form a closed polygon, and then joined by 
placing nodes at the ends, thus they form the first grid lines 
(Figure 1). These nodes are then joined to edges on the other 
side of the device, and a node is inserted at each 
intersection, thus further grid lines are generated. This 
process results in the first fully connected grid (Figure 2). 

SOURCE 

,&ssm_ . 
(SS^M^ 

DRAIN 

, / ^ ^ % 

:igure 1: Grid lines and Nodes Generated by 
initial geometry data. 

SOURCE DRAIN 

1 I 

1 1 

1 1 

» CATE < 

^ ^ 

> 1 

i 1 

I < i i i 

Figure 2: Pre-lnitial Grid formed by 
connecting initial nodes. 

The next step is to insert grid lines until some maximum 
spacing criterion has been satisfied. Sufficient new grid 
lines are inserted at regular intervals between existing lines 
to ensure that the spacing between lines is less than a 



533 

SOURCE 

^M^ CATE 

« ^ ^ 

DRAIN 

«m 

Figure 3: Initial Finite-Difference Grid. 

certain distance, generally 0.1 to 0.05 jxm for a typical GaAs 
MESFET. The resulting grid (Figure 3) is called the initial 
grid. The semiconductor equations are then solved on this 
grid to give an initial steady-state solution. This is done 
by solving the time-dependent semiconductor equations until 
the contact currents remain constant between timesteps. 

This initial solution is used to further refine the grid. 
New nodes are inserted in regions where the solution accuracy 
is poor. These are usually those regions at which the 
potential or the electron density varies by more than a 
certain amount between nodes. An example of a refined grid 
may be seen in figure 4. The values for the solution 
variables at the new nodes are found initially from a 
quadratic interpolation of the values at the pre-existing 
nodes on either side of the new node. This updated grid is 
then used to re-compute the steady-state solution over the 
entire mesh, retaining the original contact potentials, after 
which several more grid updates may be performed until some 
final solution accuracy is reached. After this process is 
complete, an A.C. or transient simulation may be performed by 



534 

varying the contact potentials incrementally over a number of 
timesteps, as would happen in a real device stimulated by an 
external circuit. 

4. Programming Considerations 

Computer simulations of semiconductor devices, especially 
those which may be used to generate A.C. or transient results, 
typically use large amounts of computer resources. The most 
important of these are time and memory. For example, on a VAX 
11/780 minicomputer it is not unusual for a simulation to 
require an hour of CPU time (which can translate to several 
hours elapsed time), and two or three megabytes of memory, to 
calculate the steady-state solution for one bias point. This 
can incur a large cost to the user. 

In order to minimise this cost, careful consideration 
must be made to the language, algorithms, and data structures 
used in the program. Often it is found that there is a 
trade-off to be made between time and memory. Calculating and 
storing internal variables once for use many times throughout 
the execution of the program may take less time than re­
calculating them every time they are used, but requires more 
memory. 

The efficiency of a program is also dependent upon the 
initial definition of the problem. In general, if all of the 
geometry and characteristics of a device are defined when the 
program is written, a very efficient program can result. If 
the geometry is undefined when the program is written, the 
program will, in general, be less efficient. 

Programs which have the geometry of the simulated device 
built in to their structure often use fixed, rectangular two-
dimensional arrays to store the function values at each of the 
finite-difference nodes. In this structure, the position of a 
point in the device is related in some invariant way to it's 
position within the array, that is the point [i,j] in the 
array may be at coordinate (ixAx.jxAy) in real space. In 
addition, the spatial relationship between nodes is reflected 
in the structure of the array, the points [i,j] and [i,j+l] in 
the array are also adjacent in real space. The ability of the 
current program to define the device at run-time makes it 
impossible to determine the shape of the grid, the number of 
nodes, and the relationship between them, when the program is 
compiled. As a result it is not possible to use this structure 
to store the nodal data. 

In the current simulation three additional complications 
present themselves. First, the mapping between grid row and 
column and real space coordinate may be non-linear (as for a 
non-uniform mesh). Second, it is necessary to be able to 
insert rows and columns into the mesh. Third, there may be 



535 

more than one row (or column) at the same x (or y) position, 
as are the first few horizontal lines in the FET of figure 2. 
Special data structures have been developed to store the nodal 
data. The current software has been implemented in both 
FORTRAN and PASCAL, with different data structures used in 
each. 

The FORTRAN implementation uses single dimensional arrays 
to store the function values and the position of each node. 
These are of sufficient length to be able to contain the 
maximum possible number of points. Different arrays are used 
for each variable (potential, electron density etc), the same 
index in each array referring to the same mesh node. In 

109 

i 
n 

r 

i 
n 
k 

1 

i 
n 

i r 2 

i 
n 

498 

0 

w 
W 

31 

1 

i 
n 

Node 110 and it's neighbours. 

$ n up left down right 

109 

110 

111 

498 109 
110 

231 

""" 

110 
111 

Function arrays Integer "pointer" arrays 

Figure 5: FORTRAN Data Structure. 



536 

addition, four integer arrays are used to store the indices of 
the node's neighbours, i.e. the nodes immediately above, 
below, left and right of the current node. These arrays 
effectively "point" to the nodes on either side of the current 
node (Figure 5). This implementation was found to be 
relatively inefficient. The data pertaining to a node and 
it's neighbours is spread in a random fashion throughout the 
computer memory, on a virtual memory system this can result in 
a great deal of time being spent performing relatively slow 
paging operations during the iteration process. In addition, 
many costly address calculations must be performed at run-time 
while accessing the data associate with a node and it's 
neighbours. In contrast, much of this calculation can be 
performed at compile-time by an efficient compiler optimiser 
when a fixed, two-dimensional, array structure is used, as the 
position in memory of each array, and point within the array, 
is known. 

The more recent PASCAL implementation of the software 
uses a more elegant and efficient method of storing the nodal 
information. The PASCAL RECORD structure is used to contain 
all of the information pertaining to one node, thus keeping it 
in the same vicinity in memory. In addition, the PASCAL type 
POINTER is used within each of these records to hold the 
actual address in memory of the records containing the 
neighbouring nodes, which allows rapid access to adjacent 
nodes, without the necessity of lengthy address calculations. 
The dynamic nature of the grid generation process itself gives 
PASCAL a further advantage. The PASCAL NEWQ and DISPOSEQ 
built-in functions may be used to generate new nodal records 
as they are required during the simulation process. 
Initially, the program uses very little memory, as the grid 
grows during the refinement process, so does the memory usage. 
This can be an important advantage where computer resources 
are sparse, as the size of the program is related to the size 
of the problem, unlike the FORTRAN implementations, where the 
size of the internal arrays, and hence the program as a whole, 
must be determined at compile-time. 

It was found that the PASCAL implementation used less 
time and memory when compared to the FORTRAN program. The 
speed of execution was more than doubled, and the program size 
was less than three-quarters, for the same problem. Comparison 
of the PASCAL with the best optimised, fixed two-dimensional, 
uniform rectangular grid FORTRAN program showed that the 
PASCAL was still only about one third the speed, however, it 
is felt that the added flexibility of the variable grid 
program far outweighs this speed difference. The current 
software is comprised of about 10000 lines of code, divided 
into two programs. The first of these performs the 
simulation, producing a binary file of the results. The 
second reads this file, and may be used to produce graphical 
output, for example graphs of the terminal currents, plots of 



537 

the internal potentials and electron densities etc. (for 
example, figure 8 ) . 

5. Simulation Results 

The computer model described in the previous sections has 
been used to simulate both a planar and recessed gate MESFET. 
The geometry of these devices is shown in figure 6. Both 

1.0pm . 1.0pm . 1.0pm . 1.0pm . 1.0pm 

SOURCE GATE DRAIN 

1.2pm 

.4pm 

/ \ r\ 
CHANNEL N d = 1 o " c m " 3 

BUFFER N d = 1 0 , 5 c m " 3 

/ \ 

(a) Planar MESFET 

o.i 2pm 

0.2|jn 

i.4ijm 

SOURCE DRAIN 

GATE 

a 
L 

CHANNEL N d = 1 0 , 7 c m " 3 

BUFFER N d = 1 o " c m " 3 

(b) Recessed Gate MESFET 

Figure 6: Planar and Recessed Gate 
Devices. 



538 

devices have a gate length of 1.0/im and an active channel 
depth of 0.2pm below the gate. The recessed gate device has a 
gate rficesjs. depth of 0.12/jm. The doping in the active channel 
is 10 cm , and that in the buffer region is 10 cm . The 
spacings between the three contacts is 1.0pm, and the first 
1.0/jra of the drain and source contacts are modelled. 



539 

The calculated transfer characteristics of these devices 
are shown in figure 7. These were produced by calculating the 
steady-state terminal currents for a variety of bias points. 
The IDSS of the planar device is about 125 ma/mm of device 
width, and that of the recessed gate device about 150 ma/mm. 
The pinch-off voltage of the planar device is around 2.5 
volts, in comparison with the 2.0 volts calculated from a 
simple one-dimensional model for the Schottky gate. This 
difference can in part be ascribed to the perturbation of the 
electrostatic solution around the gate from that calculated by 
the one-dimensional model, due to the inherent two-dimensional 
nature of the contact. The pinch-off voltage of the recessed 
gate device is somewhat higher, being around 3.0 volts. The 
electrostatic solution for the potential and charge 
distribution around the recessed gate is further perturbed 
from that calculated by the simple one-dimensional model by 
the edges of the gate recess, as some of the depletion region 
charge moves into that part of the channel above that gate. 
This has the effect of both raising the potential at which the 
channel pinches off, and causing the channel current to vary 
in a more non-linear fashion with applied gate potential. The 
output conductance is also marginally higher for the recessed 
gate device. 

Figure 5: Current density in the Recessed Gate FET near Pinch-off . 



540 

Figure 8 is a diagram of the total current density 
throughout the recessed gate device, when the device is nearly 
pinched off. The channel current in this device is 30 ma/nun, 
and the drain-source potential is 4.0 volts. In this device 
nearly all of the current between the drain and the source is 
flowing in the buffer region, as the depletion region extends 
through the channel into the buffer. This 
uncharacteristically high substrate current density is a 

feature which becomes more significant at shorter gate 
lengths. Figure 9 shows the transfer characteristic of a 
similar device, with a gate length of 0.5/im. Two features are 
immediately apparent when these results are compared to 
experimental measurements. First, the calculated output 
conductance is very high, and second, the pinch-off voltage is 
large, being over 5 volts. In addition, at a gate bias of 5 
volts, the drain current is pinched off for drain potentials 
less than about 4 volts, after which a source-drain current is 
seen to flow which increases as the drain potential increases. 
These features result from the high substrate current 
calculated by the simulation program. The high output 
conductance arises due to the fact that the substrate current 
is predominantly modulated by the drain potential, not the 
gate potential, as is the channel current. The high pinch-off 
voltage is caused by the current flow within the substrate 
which, even at high gate bias, is little affected by the gate. 



541 

Simulation of a device consisting of only the active channel 
portion of the above device (without the buffer/substrate) 
confirms this conclusion. The pinch-off voltage as calculated 
by the simulation program is now much closer to that 
calculated using a one-dimensional model, and the output 
conductance is greatly reduced. The trends indicate by the 
computer simulation are essentially correct. It is often 
found that the pinch-off voltage, and the output conductance, 
are larger for shorter gate length devices. 

This anomalous behaviour is to a large extent to be due 
to the form of the electron velocity-field characteristic used 
in the the simulation. This is based on Hilsum's empirical 
relationship between low field mobility p and carrier 
concentration [5], giving a low-field mobility ° 

23 

The equilibrium carrier concentration in the buffer, which is 
usually small, is taken to be the same as the effective donor 
concentration, N_, in the substrate. The low field mobility 
in the substrate,, is _±hus calculated to he -iVery high, 
approximately 0.8m V s , as opposed to 0.4m V~ s~ in the 
active channel. 

Recent GMR mobility measurements on FET's have, however, 
indicated that this may not be the case. While the low field 
mobility in the active channel is close to that calculated 
from equation (5), that in.the buffer region drops rapidly to 
a value of less than 0.2m V s , in stark contrast to that 
calculated bu the Hilsum's relationship. This is probably due 
to the high level of compensation in the buffer regions of 
most FET's, while the carrier concentration is nearly that of 
intrinsic GaAs, the donor and acceptor concentrations can be 
very high. 

Preliminary testing of this conclusion using a planar 
device simulation program by Snowden [6] has indicated that 
reducing the mobility in the substrate has the effect of 
reducing both the output conductance and the pinch-off voltage 
of the simulated FET. At present, results are not available 
from the current software using such a revised mobility 
profile, although it is felt that a similar behaviour will be 
seen. 

6. Conclusions 

The numerical simulation package described here may be 
used to simulate a variety of device geometries. Automatic 
grid generation based upon the geometry of the device to be 
simulated, and automatic refinement based upon previously 



542 

calculated solutions, enables the program to be used, without 
modification, to simulate different devices. Comparison of 
FORTRAN and PASCAL implementations of the program has shown 
that the flexibility of the PASCAL language and data 
structures enables a better than two-fold increase in 
efficiency over the FORTRAN implementation, thereby increasing 
the flexibility of the program. 

The simulation has been applied to both a planar and a 
recessed gate GaAs MESFET, both with gate lengths of 1.0/im. 
The results indicated that the recessed gate device had a 
substantially higher Î qe than the planar device, and that the 
variation of saturated drain current with gate potential was 
more non-linear in the recessed gate device. An 
uncharacteristically high substrate current density is noted, 
which becomes even more apparent at shorter gate lengths. It 
is found that Hilsum's empirical relationship between carrier 
concentration and low-field mobility may be inadequate in the 
highly compensated buffer layer found in many FET's, as it 
gives a mobility which is much higher than that indicated by 
GMR mobility measurements on FET's. 

Applications of this program are in the area of 
semiconductor device design. The flexibility of the software 
makes it ideal for calculating the effects of changes made to 
the device parameters during the design and manufacturing 
process, without the use of costly iterative design loops. 

Acknowledgement 

The authors would like to thank the General Electric 
Company, Hirst Research Centre, East Lane, Wembley, Middlesex, 
U.K. for their financial support of this work. The authors 
would also like to thank Dr. P.H. Ladbrooke of that 
organisation for his helpful 

References 

[1] SNOWDEN, C.MA 
"Semiconductor Device Modelling", 
Rep. Prog. Fhys., Vol. 48, pp 223-275, 1985. 

[2] SELBERHERR, S., 
"Analysis and Simulation of Semiconductor Devices", 
Springer-Verlag, Wien, 1984. 

[3] SCHARFETTER, D.L., and GUMMEL, H.K., 
"Large-Signal Analysis of a Silicon Read Diode 
Oscillator", 
IEEE Trans. Elect, Dev., Vol. ED-16, No. 1, January 1969, 
pp. 64-77. 



543 

[4] REISER, M., 
"Large-Scale Numerical Simulation in Semiconductor Device 
Modelling", 
Comp. Meth. Appl. Mech. Eng., Vol. 1, pp 17-38, 1972. 

[5] HILSUM, C., 
"Simple Empirical Relationship Between Mobility and 
Carrier Concentration" 
Electronic Letters, Vol. 10, NO. 12, p259, 1974. 

[6] SNOWDEN, CM., 
"Two-Dimensional Modelling of Non-Stationary Effects in 
GaAs MESFET's" 
This Publication. 


