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ABSTRACT 

We present a new, rigorous technique for coupling Monte Carlo 
and drift-diffusion models for computationally efficient global device 
simulation. From regional Monte Carlo simulation, the position-
dependent mobility, diffusion coefficient, and the energy-gradient field 
are evaluated for specific regions of several common device structures 
where hot electron effects are important. These are then used in a 
hybrid scheme for coupling Monte Carlo and drift-diffusion models so 
as to gain the advantages of each. 

1. INTRODUCTION 

A major drawback of global Monte Carlo simulation [1,2] is that 
the technique is difficult to apply to devices that contain low-field 
regions and is computationally demanding in many cases (e.g. when 
coupled with Poisson's equation or when carrier-carrier scattering is 
included). Because of this, drift-diffusion based device models continue 
to find wide application [3,4,5] - in spite of their well-known limita
tions [6]. Drift-diffusion models are simple and offer other benefits 
such as the capability to model recombination-generation currents and 
are also more suitable for studying capacitive effects. The major 
shortcoming of the drift-diffusion formalism is that it cannot model 
hot carrier effects, especially non-local effects such as velocity 
overshoot. Fortunately, such effects are absent in the low-field regions 
of a device, where Monte Carlo is inefficient. Consequently, these 
regions can be accurately modeled by conventional drift-diffusion for
malism. It is only the high-field regions that require Monte Carlo, and 
this presents no serious problem since Monte Carlo is computationally 
efficient in these regions. Recently a new technique has been proposed 
[7,8] that couples Monte Carlo and drift-diffusion models in order to 

^obtain the advantages of each. In this technique (hybrid technique), 
only the high-field regions of a device are simulated bv Monte Carlo 
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aud the low field regions are described by a lield-indcpendcnt mobility. 
From the simulation data for the high-field regions, a position-
dependent mobility and diffusion coefficient are extracted and used in 
the conventional drift-diffusion equation to model the entire device. 
However, the method for extracting mobility and diffusion coefficient 
m the existing technique is ad hoc and it is difficult to judge its vali
dity. In this paper, we present a new, rigorous technique for extracting 
such transport parameters from regional Monte Carlo simulations. We 
relate the transport parameters to the carrier distribution function, 
and evaluate such parameters within representative sub-micron 
structures. 

The objective of this work is to present a rigorous prescription for 
evaluating transport parameters in short devices where hot carrier 
effects are important. The motivation for the objective arises from the 
observation that the hybrid technique is computationally efficient and 
has the potentiality to evolve as a viable scheme for accurate modeling 
of hot carrier effects. Yet, the existing techniques [7,8] are non
rigorous and therefore cannot exploit the full potentiality of the 
hybrid scheme. The technique that we present is rigorous, and at the 
same time, requires no more computational effort than the existing 
technique. Our technique is rigorously derived from the Boltzmann 
Transport Equation (BTE). As a result, transport variables such as 
current density, carrier density and carrier temperature evaluated by 
our technique are expected to be of general validity and their accuracy 
determined solely by the sophistication of the Monte Carlo program. 

We begin in Sec. 2 by describing the theory of regional Monte 
Carlo simulation. We also demonstrate that the drift-diffusion equa
tions are exact if the correct mobility and diffusion coefficient are used 
(an additional parameter termed the energy-gradient field is also 
required). We then show how these parameters can be evaluated using 
the results of Monte Carlo simulations. In Sec. 3 we illustrate the 
technique by computing drift-diffusion parameters for various device 
structures. These examples illustrate how the distribution function 
and the transport coefficients (mobility, diffusion coefficient and 
energy-gradient field) vary with position in typical device structures. 
Finally, the contributions and main findings of the paper are summar
ized in Sec. 4. 

2. T H E O R Y 

In regional Monte Carlo analysis [7], portions of the device for 
which drift-diffusion is thought to be inapplicable are first identified. 
Monte Carlo simulation is ther^ performed for such regions by assum
ing a distribution function fj(k) at the left boundary and a distribu
tion function f2(lc) at the right boundary. This procedure yields the 
electron density n(x*) and the ensemble velocity v(x*) from which a 
position-dependent mobility n(X) and a diffusion coefficient D(x*) are 
extracted. 
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The current, carrier density, and average carrier velocity com
puted by Monte Carlo simulation are related by 

J; = -qn(5?) v; (*) . (1) 

In principle, it is possible to solve this equation directly to obtain 
J; and n(x*), using the v;(x*) computed by Monte Carlo. However, when 
the equation is solved iteratively with Poisson's equation, the electric 
field inside the device may change with each successive iteration, and 
the Monte Carlo simulation has to be re-run each time to compute the 
new V;(5?j). In that case, it is advantageous to recast equation (1) in 
the form of a drift-diffusion equation, involving parameters such as 
mobility and diffusion coefficient. These parameters do not change 
very much with the electric field unless the distribution function 
changes drastically. (For instance, in the moderate field limit, V;(?) is 
approximately proportional to the electric field, but mobility is rela
tively independent or the electric field). Such parameters are thus 
expected to be far less sensitive to changing electric fields than V;(x*), 
so that the Monte Carlo simulation need not be run everytime and 
convergence could be achieved faster. The problem then is to recast 
equation (1) correctly in the form of a drift-diffusion equation involv
ing transport parameters. 

We wish to choose /i and D in a conventional drift-diffusion equa
tion, 

J, = q^nOMW + qD,(Sf) ^ - , (2) 

where B-x is the electric field, so that the n(x*) and Y(x*) obtained by 
Monte Carlo analysis are recovered. It is apparent that for a given 
n(3?) and v(5?) there are numerous ways to choose /i(x*) and D(x*) so 
that (1) and (2) are equal. One method would be to assume the Ein
stein relation, 

D(5?) = (kT/q)/i(*) (3) 
where T is the lattice temperature. Using (1) - (3) we find 

V(?) = -/!(*) £(*) + — — In n(*) 
V ' q fit 

(4) 

which gives /i(x*) and D(x*) as a unique function of £ (x*), n(x*) and v(x'). 

This prescription for finding /i and D from n and V is straightfor
ward and simple but is not rigorous. The use of the Einstein relation is 
questionable; even for homogeneous electric fields one should replace 
the lattice temperature T by the electron temperature Te when the 
field is large. Consequently, only the total current is correctly 
evaluated - the diffusion current component is not. Moreover, fi and D 
obtained in this way are not the true physical parameters, they are 
simply chosen so that (2) reproduces the carrier density and velocity 
obtained by Monte Carlo analysis. As a result it is difficult to obtain 
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insight into the expected variations of these parameters within an 
arbitrary device. 

We now reformulate the conventional drift-diffusion equations 
and describe a method for obtaining the drift-diffusion transport 
parameters. This technique can be justified rigorously from the 
Bollzmann Equation and is of general validity. Steady-state electron 
transport is described by a Boltzmann Transport Equation of the 
form: 

d( 
dl 

(5) 
Icoll 

1 dE dl q£j dl 
1 dkj dxt H dk-} 

(q is the magnitude of the electronic charge, a positive quantity). As 
shown in the appendix, the first moment of this equation can be 
expressed in the form 

J5 = q n ^ ( ^ + ^ ) + q D i j ^ , (6) 

where summation over repeated indices is implied. Comparing (6) 
with the conventional drift-diffusion equation, we observe that an 
additional parameter, termed the energy-gradient field c , is required 
in order to correctly describe carrier transport in drift-diffusion form. 
The importance of this term has been discussed extensively in the 
literature [9]. This term is required to model the non-local effects of 
spatial transients which influence such phenomena as velocity-
overshoot. , Equation (6) is exact if the transport parameters, 
ft, D, and G , are evaluated from the distribution function as described 
below. 

To evaluate the transport parameters in (6) the carrier distribu
tion function f(x*,lc) must be known in the regions of interest. Monte 
Carlo simulation provides a means for determining f(x*, k) in these 
regions. From the results of Monte Carlo simulation, we evaluate the 
zeroth moment of the distribution function (related to the average car
rier density) 

*(*) = j ; S tftf). (7) 

the first moment (the average carrier velocity), 

<Vi(*)> = S A?,*) / E «*.*) . (») i M 
[H dk; 

and the second moment (the component of the average kinetic energy 
per carrier along the field), 

<"#)> = 7 S «*# JjT kj / E fltf) . (fl) 

where ft is the sample volume and ^kE/ft gives the velocity of an 
electron with wave vector lc. As shown in the appendix, the tran
sport parameters in the drift-diffusion equation, (6), are obtained by 
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the following prescription: 

" « W ~ T~—2 d~— ' ( 10 ) 

l\ + (U::n) 

and 

D i j = - PikUkj , ( u ) 

f j ' ^ f uy . (12) 

, Equation (6) can now be used for device simulation with /i, D and 
% obtained from (10) - (12) using (7) - (9) which are evaluated from 
the distribution function (computed, for example, by regional Monte 
Carlo simulation). This procedure for evaluating the transport param
eters is valid for low and high-Held transport under spatially homo
geneous or nonhomogeneous conditions. The procedure is valid even 
when nonparabolicity of the band, and multiple valley occupancy 
must be considered. Such effects are already taken into account when 
evaluating v; and uy from (8) and (9). Note that under low-field con
ditions, Ujj = — lcT ĵj (electron temperature is both isotropic and 

independent of position) so that t = 0 and (11) reverts to the- con
ventional Einstein relation (Eq. 3). Under these conditions, the usual 
drift-diffusion equations are recovered. Under high-field spatially uni
form conditions, £ = 0 so that (6) reverts to a conventional drift-
diffusion equation (Eq. 2) with field-dependent fi and D. Under spa
tially nonuniform conditions, such as those that frequently occur in 
devices, the energy-gradient field can be quite important and must be 
considered during spatial transients. It may either aid or oppose the 
applied electric field. 

3 . EXAMPLES 

In this section, we apply the rigorous technique presented in the 
previous section in order to evaluate fift), D(?), and $ (x*) within typi
cal GaAs and AlGaAs/GaAs device structures. The distribution func
tion was first evaluated by an ensemble Monte Carlo technique similar 
to that described by Williams [lofthen (7) - (12) were applied to 
evaluate the transport parameters. The examples were chosen to illus
trate transport effects in two recently proposed structures both of 
which were considered for potential application as high-speed devices. 
A one-dimensional structure is assumed, with the electric field in the 
-x direction and fixx, Dxx, and Sxx are evaluated. 

The first example to be discussed illustrates transport effects in 
the base of a Ballistic Base Heterojunction Bipolar Transistor 
(BBIIBT) [11] where electrons are injected into the base from a 
"ballistic launching ramp". The ramp imparts high initial velocities to 
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the electrons and thereby reduces base transit time. The structure 
consists of a 0.25 /im section of GaAs with an electric field of 104 

v/cm and an absorbing contact at the right which represents the 
reverse-biased collector junction. Carriers are injected from a 
velocity-weighted Maxwellian at the right with a minimum kinetic 
energy of 4kT to simulate carrier injection across a 4kT ballistic 
launching ramp. The results of Monte Carlo simulation and transport 
parameter extraction are displayed in Figs, la - 11. Since carriers are 
injected with high energy (well above the threshold for polar optical 
phonon emission but not high enough for intervalley transfer to dom
inate) the main scattering event is again polar optical phonon emis
sion. This type of scattering does not spread the distribution function 
since it favors small-angle scattering which allows the carriers to 
stream. In fact, at an energy of 4kT, the probability that cos0 ~ 1 (9 is 
the scattering angle) is about 70 times larger than the probability that 
cos0 ~ 0 [15]. As a result, the distribution function closely approxi
mates a 6 function at a velocity corresponding to the injection energy. 
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la. Average velocity versus position for example 1. The structure is 
a 0.25 fim section of GaAs with a 104v/cm electric field and a 
ballistic launching ramp of 4kT at the left. 
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lc. Longitudinal component of average kinetic energy per carrier 
versus position for example 1. 

Id. Mobility versus position for example 1. 
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le. Diffusion coefficient versus position for example 1. 

If. Energy-gradient field versus position for example 1. 
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As the average energy drops due to polar optical phonon emission, the 
anisotropy in the scattering mechanism is also reduced [12] and the 
distribution function spreads. Finally when intervalley scattering sets 
in, the distribution function spreads rapidly because of the randomiz
ing nature of this scattering. Associated with the onset of intervalley 
scattering is the rapid degradation of mobility as seen in Fig. Id. The 
x-directed kinetic energy component uxx is relatively constant until 
intervalley transfer occurs; as a result Dxx tracks fixx but falls more 
rapidly with the onset of intervalley transfer. The energy-gradient 
field undergoes complicated variation since carriers enter with substan
tial kinetic energy, lose some due to collisions, are then accelerated in 
the field, and finally lose kinetic energy when intervalley transfer 
occurs. The energy-gradient fleld aids, then opposes, then aids, and 
finally opposes the real field; for most of the structure its magnitude is 
a substantial fraction of the real field. 

The next example chosen is a repeated velocity overshoot struc
ture (staircase structure) [13]. The Monte Carlo simulation was per
formed with periodic boundary conditions. Each section was taken to 
be 6000 A long and the step-height was adjusted to 0.1 ev in order to 
inject carriers within the collision-free-window Jl4]. The applied elec
tric field was 4.2 kv/cm. The transport variables and the results of 
the transport parameter extraction are displayed in Figs. 2b-2g. As 
shown in Fig. 2d, uxx rapidly falls at the beginning due to frequent 
emission of polar optical phonons until a quasi-steady-state situation is 
reached. The mobility shown in Fig. 2e undergoes complicated varia
tions; its rapid rise at the right end of the section is an artifact of the 
"anticipatory effect" [15]. Because of the steep drop in the potential at 
the right end of the stair-step, the electron ensemble in this region is 
composed almost entirely of particles traveling in the forward direc
tion. This raises the average velocity and causes the rise in mobility. 
The average mobilty in the structure is however only about 6800 
cm2/v-sec which is about 15 % less than the mobility in intrinsic 
GaAs at the applied Geld of 4.2 kv/cm. 

2a. Energy band diagram for a staircase heterostructure. 
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2b. Average velocity versus position for example 2. 
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2c. Average carrier density versus position for example 2. 
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The diffusion coefficient shown in Fig. 2f is extremely high 
throughout the structure and consequently the diffusion current is a 
significant fraction of the total current, especially at the left end where 
the gradient in the carrier concentration is also high. 

The energy-gradient field is very large and roughly equal to the 
applied field at the left end. Also its direction is such that it aids the 
applied field. Consequently, the velocity shown in Fig. 2b is somewhat 
higher at the left end. 

4. SUMMARY 

In this paper we have presented a rigorous prescription for 
evaluating transport coefficients in ultrasmall structures. These can be 
used in a computationally efficient and rigorous technique for simulat
ing hot carrier transport in typical sub-micron devices. Several exam
ple computations were performed in order to illustrate the technique 
for device structures that are of interest. The results provide insight 

into the nature of carrier transport within such devices and provide 
quantitative estimates for drift-diffusion transport parameters in such 
structures. 
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APPENDIX 

In this appendix, we derive the transport equation (6) from the 
Boltzmann Transport Equation (BTE); the validity of the BTE is 
assumed, but no further assumptions are made. The BTE is written 
as 

1 dE .W--^^=5s(t;i0f(^)[lH(l0]^^)^ll-f(C ,)].(Al) 
/ T * T + ' N 

t 5kj dxj H dk-} % 

where f(x, 1c) is the electron distribution function, S ( 0 ' ) is the rate of 
scattering from the state lc to the state 1c and — -TJ— is the velocity 

V:. Summation over the repeated index j is implied. We now take^the 
flrst moment by multiplying (Al) by k; and summing over k to 
obtain, 

1 3 E , 61 ^ . a £ u JL 
V t dk} ' dx} % * ' 5kj 
E 

s(T ,Tc)f(I?')[n(E)]-sOElTc }f(^)[i-f(^)] (A2) 
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Equation (A2) can be expressed as 

-5-(2nuB) + q«,n = 
dx 

dp; 

dt coll 

where 
_ 1 dE 

m, = £S<M)^*. 
fi is the volume element, and 

dpi 

dt coii = •^ESPMki')S(ff)#-^ ,) l 

is the rate of loss of electron momentum due to collisions. 
We now take as the defining relation for the mobility: 

dpj_ 

coll 

dPi 

Ji = ~H dt 

(A3a) 

(A3b) 

(A3c) 

(A4) 

When (A4) is solved for 

obtain 
dt coll 

, the result can be used in (A3a) to 

J; =qnfi(6l+S'i) + qDjj - ^ - (A5) 

which is the desired result. The diffusion coefficient in (A5) is 

Dij = ^ik(2ukj/q) (A6) 
and the energy-gradient Celd, 

el = - 4- uii • (A7) 
An alternative expression for fiy} that is more convenient to compute 
by Monte Carlo simulation can be obtained by writing 

J; = - q n < v ; > (A8) 

which may be inserted in (A4) to solve for the momentum loss term. 
When this result is inserted in (A3a), the mobility is obtained as 

/*«(50=-<Vi(*)>/(Sj(*) + 
qn(*) dx-x 

("ijn)) (A9) 


